地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (4): 528-539.doi: 10.3724/SP.J.1047.2017.00528
收稿日期:
2016-05-30
修回日期:
2016-12-20
出版日期:
2017-04-20
发布日期:
2017-04-20
作者简介:
作者简介:张 靖(1982-),男,博士,讲师,研究方向为点云数据处理。E-mail:
基金资助:
ZHANG Jing(), JIANG Wanshou*(
)
Received:
2016-05-30
Revised:
2016-12-20
Online:
2017-04-20
Published:
2017-04-20
Contact:
JIANG Wanshou
摘要:
激光点云与光学影像是2种重要的遥感数据源,二者的融合能够实现优势互补,具有应用价值。点云与影像的配准是实现二者集成应用的基础,虽然经历了多年的发展仍存在许多问题有待解决。本文首先通过建立点云与影像配准问题的数学范式,将整个配准问题划分为观测值提取、配准模型选择和参数优化3部分,深入分析各部分所面临的难点与挑战;然后对现有的点云与影像配准方法进行回顾与总结,对比分析各类方法的优缺点及适用范围;最后展望了今后的发展方向进行了展望,为后续的研究提供参考。
张靖, 江万寿. 激光点云与光学影像配准:现状与趋势[J]. 地球信息科学学报, 2017, 19(4): 528-539.DOI:10.3724/SP.J.1047.2017.00528
ZHANG Jing,JIANG Wanshou. Registration between Laser Scanning Point Cloud and Optical Images: Status and Trends[J]. Journal of Geo-information Science, 2017, 19(4): 528-539.DOI:10.3724/SP.J.1047.2017.00528
表1
观测值获取方法比较
方法 | 数据源 | 特征提取 | 特征描述 | 相似性测度 | 鲁棒性 | 配准精度 | 备注 | |
---|---|---|---|---|---|---|---|---|
基于区域的方法 | 空间域方法 | 光学影像,强度影像或DSM | 不需要 | 不需要 | SAD,SSD,NCC,LSCC | 较差,对灰度差异敏感 | 高 | 速度较慢,适用于机载数据 |
频率域方法 | 光学影像,强度影像或DSM | 不需要 | 不需要 | 相位相关 | 对噪声和灰度差异具有一定鲁棒性 | 很高 | 计算速度快,适用于机载数据 | |
统计方法 | 光学影像,强度影像或DSM | 不需要 | 不需要 | 互信息 | 对灰度鲁棒性好 | 高 | 需要较好的初值,适用于机载、车载和地面固定站 | |
基于特征的方法 | 点特征 | 光学影像,强度影像或DSM | 检测角点或斑点 | 基于邻域内的灰度或几何结构的描述子 | KNN或NCC | 对灰度差异和几何变形鲁棒 | 高 | 自然场景和人工场景内都存在丰富的点特征,适应范围广 |
线特征 | 光学影像,强度影像或DSM | 检测边缘,边缘编组 | 几何特征描述子 | 基于距离、角度等几何关系的判断 | 对灰度差异和几何变形鲁棒 | 高 | 适合城市区域,常用于车载数据和地面固定站数据 | |
面特征 | 光学影像,激光点云或DSM | 光学影像上检测纹理均质区域,点云中检测平面 | 不需要 | 基于距离判断 | 好 | 低 | 适合进行粗配准 | |
多视几何配准方法 | 光学影像序列,激光点云 | 光学影像序列中恢复三维信息 | 不需要 | 基于ICP的对应点提取 | 好 | 高 | 需要较好的初值,常于车载数据 |
[1] | 张帆,黄先锋,李德仁.激光扫描与光学影像数据配准的研究进展[J].测绘通报,2008(2):7-10. |
[Zhang F, Huang X F, Li D R. A review of registration of laser scanner data and optical image[J]. Bulletin of Surveying and Mapping, 2008(2):7-10. ] | |
[2] |
Mishra R K, Zhang Y.A review of optical imagery and airborne LiDAR data registration methods[J]. The Open Remote Sensing Journal, 2012,6(5):54-63.
doi: 10.2174/1875413901205010054 |
[3] | Stamos I.Automated registration of 3D-range with 2D-color images: an overview[C]. Information Sciences and Systems (CISS), 2010 44th Annual Conference on, 2010:1-6. |
[4] |
G. Sindhu Madhuri.Classification of image registration techniques and algorithms in digital image processing: A research survey[J]. International Journal of Computer Trends and Technology (IJCTT), 2014,15(2):78-82.
doi: 10.14445/22312803/IJCTT-V15P118 |
[5] |
Gendrin C, Markelj P, Pawiro S A, et al.Validation for 2D/3D registration II: The comparison of intensity- and gradient-based merit functions using a new gold standard data set[J]. Medical physics, 2011,38(3):1491-1502.
doi: 10.1118/1.3553403 |
[6] | Umeda K, Godin G, Rioux M.Registration of range and color images using gradient constraints and range intensity images[C]. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 2004,13(3):12-15. |
[7] |
Duraisamy P, Belkhouche Y, Jackson S, et al. Automated two-dimensional-threedimensional registration using intensity gradients for three-dimensional reconstruction[J]. Journal of Applied Remote Sensing, 2012,6(1):063517(1-13).
doi: 10.1117/1.JRS.6.063517 |
[8] | 叶沅鑫,单杰,彭剑威,等.利用局部自相似进行多光谱遥感图像自动配准[J].测绘学报,2014,43(3):268-275. |
[Ye Y X, Shan J, Peng J W.Automated multispectral remote sensing image registration based on local self-similarity[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(3):268-275. ] | |
[9] | Kuglin C D, Hines D C.The phase correlation image alignment method[C]. Proc. IEEE 1975 Inf. Conf. Cybernet. Society, New York, 1975:163-165. |
[10] | Reddy B S, Chatterji B N.An FFT-based technique for translation, rotation, and scale-invariant image registration[J]. Image Processing, IEEE Transactions on, 1996,5(8):1266-1271. |
[11] | Shorter N, Kasparis T.Autonomous registration of LiDAR data to single aerial image[C]. Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, IEEE, 2008,5:216-219. |
[12] |
Wong A, Orchard J.Efficient FFT-Accelerated approach to invariant optical-LIDAR registration[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2008,46(11):3917-3925.
doi: 10.1109/TGRS.2008.2001685 |
[13] |
Foroosh H, Zerubia J B, Berthod M.Extension of phase correlation to subpixel registration[J]. Image Processing, IEEE Transactions on, 2002,11(3):188-200.
doi: 10.1109/83.988953 pmid: 18244623 |
[14] | Yan H, Liu J G.Robust phase correlation based feature matching for image co-registration and DEM generation[J]. Remote Sensing and Spatial Information Sciences, 2008,37:1751-1756. |
[15] |
Pluim J P, Maintz J A, Viergever M A.Mutual-information-based registration of medical images: A survey[J]. Medical Imaging, IEEE Transactions on, 2003,22(8):986-1004.
doi: 10.1109/TMI.2003.815867 pmid: 12906253 |
[16] |
Chen H M, Varshney P K, Arora M K.Performance of mutual information similarity measure for registration of multitemporal remote sensing images[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003,41(11):2445-2454.
doi: 10.1109/TGRS.2003.817664 |
[17] |
Cole-Rhodes A, Johnson K L, LeMoigne J, et al. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient[J]. Image Processing, IEEE Transactions on, 2003,12(12):1495-1511.
doi: 10.1109/TIP.2003.819237 pmid: 18244705 |
[18] |
Suri S, Reinartz P.Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2010,48(2):939-949.
doi: 10.1109/TGRS.2009.2034842 |
[19] | 邓非,杨海关,李丽英.基于互信息的LIDAR与光学影像配准方法[J].测绘科学,2009,34(6):51-52. |
[Deng F, Yang H G, Li L Y.Mutual information based registration between lidar and optical image[J]. Science of Surveying and Mapping, 2009,34(6):51-52. ] | |
[20] |
王蕾,林立文.基于梯度互信息的光学影像和LIDAR强度图配准[J].地理空间信息,2010,8(3):56-58.
doi: 10.3969/j.issn.1672-4623.2010.03.019 |
[Wang L, Lin L W.Registration of optical image and lidar intensity map by mutual information based on the gradient[J]. Geospatial Information, 2010,8(3):56-58. ]
doi: 10.3969/j.issn.1672-4623.2010.03.019 |
|
[21] |
闫利,索一凡,曹亮.车载激光雷达点云与全景影像的自动配准[J].测绘科学,2016,41(4):113-117,123.
doi: 10.16251/j.cnki.1009-2307.2016.04.023 |
[Yan L, Suo Y F, Cao L.Registration of vehicle-borne lidar point cloud and panoramic image[J]. Science of Surveying and Mapping, 2016,41(4):113-117,123. ]
doi: 10.16251/j.cnki.1009-2307.2016.04.023 |
|
[22] |
Mastin A, Kepner J, Fisher J.Automatic registration of LIDAR and optical images of urban scenes[J]. Cvpr: 2009 Ieee Conference on Computer Vision and Pattern Recognition, Vols 1-4, 2009:2631-2638.
doi: 10.1109/CVPR.2009.5206539 |
[23] | Wang R, Ferrie F P, Macfarlane J.Automatic registration of mobile LiDAR and spherical panoramas[C]. Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on, IEEE, 2012:33-40. |
[24] |
Parmehr E G, Fraser C S, Zhang C, et al.Automatic registration of optical imagery with 3D LiDAR data using statistical similarity[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,88:28-40.
doi: 10.1016/j.isprsjprs.2013.11.015 |
[25] |
Mikolajczyk K, Tuytelaars T.Local invariant feature detectors: A survey[J]. Foundations and Trends® in Computer Graphics and Vision, 2007,3(3):177-280.
doi: 10.1561/0600000017 |
[26] |
Aanæs H, Dahl A, Pedersen K S.Interesting interest points[J]. International Journal of Computer Vision, 2012,97(1):18-35.
doi: 10.1007/s11263-011-0473-8 |
[27] | Ding M, Lyngbaek K, Zakhor A.Automatic registration of aerial imagery with untextured 3D LiDAR models[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, 2008:2486-2493. |
[28] |
张永军,熊小东,沈翔.城区机载LiDAR数据与航空影像的自动配准[J].遥感学报,2012,16(3):579-595.
doi: 10.11834/jrs.20121082 |
[Zhang Y J, Xiong X D, Shen X.Automatic registration of urban aerial imagery with airborne LiDAR data[J]. Journal of Remote Sensing, 2012,16(3):579-595. ]
doi: 10.11834/jrs.20121082 |
|
[29] | Li N, Huang X, Zhang F, et al.Registration of aerial imagery and lidar data in desert areas using the centroids of bushes as control information[M]. Bethesda, MD, ETATS-UNIS: Photogrammetric Engineering & Remote Sensing, 2013:743-752. |
[30] |
González-Aguilera D, Rodríguez-Gonzálvez P, Gómez-Lahoz J.An automatic procedure for co-registration of terrestrial laser scanners and digital cameras[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009,64(3):308-316.
doi: 10.1016/j.isprsjprs.2008.10.002 |
[31] | Altuntas C.An Experimental study on registration three-dimensional range images using range and intensity data[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011,3822:115-118. |
[32] |
Lowe D G.Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
[33] | Toth C K, Ju H, Grejner-Brzezinska D A. Experience with using SIFT for Multiple Image Domain Matching[C]. Annual Conference, Apr 2010, American Society for Photogrammetry and Remote Sensing, San Diego, CA, 2010. |
[34] | Ju H, Toth C K, Grejner-Brzezinska D A. Evaluation of Mutlipe-domain imagery matching based on different feature spaces[C]. 2011 ASPRS Fall Conference, Herndon, VA, USA, 2011. |
[35] | Bodensteiner C, Huebner W, Juengling K, et al.Local multi-modal image matching based on self-similarity[C]. Image Processing (ICIP), 2010 17th IEEE International Conference on, 2010:937-940. |
[36] |
Palenichka R M, Zaremba M B.Automatic extraction of control points for the registration of optical satellite and LiDAR images[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2010,48(7):2864-2879.
doi: 10.1109/TGRS.2010.2043677 |
[37] |
Habib A, Ghanma M, Morgan M, et al.Photogrammetric and LiDAR data registration using linear features[J]. Photogrammetric Engineering & Remote Sensing, 2005,71(6):699-707.
doi: 10.14358/PERS.71.6.699 |
[38] | 马洪超,姚春静,邬建伟.利用线特征进行高分辨率影像与LiDAR点云的配准[J].武汉大学学报·信息科学版, 2012,37(2):136-140,159. |
[Ma H C, Yao C J, Wu J W.Registration of lidar point clouds and high resolution images based on linear features[J]. Geomatics and Information Science of Wuhan University, 2012,37(2):136-140,159. ] | |
[39] | Yao C, Guang G.The direct registration of LiDAR point clouds and high resolution image based on linear feature by introducing an unknown parameter[C]. Int. Arch. Photogramm. Remote Sensing and Spatial Information Sciences, 2012:403-408. |
[40] |
徐景中,寇媛,袁芳,等.基于结构特征的机载LiDAR数据与航空影像自动配准[J].红外与激光工程,2013(12):3502-3508.
doi: 10.3969/j.issn.1007-2276.2013.12.061 |
[Xu J Z, Kou Y, Yuan F, et al.Auto-registration of aerial imagery and airborne lidar data based on structure feature[J]. Infrared and Laser Engineering, 2013,12:3502-3508. ]
doi: 10.3969/j.issn.1007-2276.2013.12.061 |
|
[41] | Wang L, Neumann U.A robust approach for automatic registration of aerial images with untextured aerial LiDAR data[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, 2009:2623-2630. |
[42] |
Kwak T S, Kim Y I, Yu K Y, et al.Registration of aerial imagery and aerial LiDAR data using centroids of plane roof surfaces as control information[J]. KSCE Journal of Civil Engineering September, 2006,10(5):365-370.
doi: 10.1007/BF02830090 |
[43] | Habib A, Schenk T.A new approach for matching surfaces from laser scanners and optical scanners[J]. International Archives of Photogrammetry and Remote Sensing, 1999,32(3/W14):55-61. |
[44] | Armenakis C, Gao Y, Sohn G. Co-Registration of Lidar and Photogrammetric Data for Updating Building Databases[C]."Core Spatial Databases - Updating, Maintenance and Services - from Theory to Practice", Haifa, Israel, 2010, ISPRS Archive Vol. 38, Part 4-8-3-W9: 96-100. |
[45] | Michel R.Registration of airborne laser data with one aerial image[C]. ISPRS XXth congress, Istanbul, 2004,35:1682-1750. |
[46] | Habib A, Aldelgawya M.Alternative procedures for the incorporation of LiDAR-derived linear and areal features for photogrammetric geo- referencing[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008. |
[47] |
张良,马洪超,高广,等.点、线相似不变性的城区航空影像与机载激光雷达点云自动配准[J].测绘学报,2014,43(4):372-379.
doi: 10.13485/j.cnki.11-2089.2014.0056 |
[Zhang L, Ma H C, Gao G, et al.Automatic registration of urban aerial images with airborne lidar points based on line-point similarity invariants[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(4):372-379. ]
doi: 10.13485/j.cnki.11-2089.2014.0056 |
|
[48] |
Zhang Y, Xiong X, Zheng M, et al.LiDAR strip adjustment using multifeatures matched with aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(2):976-987.
doi: 10.1109/TGRS.2014.2331234 |
[49] |
Leberl F, Irschara A, Pock T, et al.Point clouds: lidar versus 3D vision[J]. Photogrammetric Engineering & Remote Sensing, 2010,76(10):1123.
doi: 10.14358/PERS.76.10.1123 |
[50] | Postolov Y, Krupnik A, McIntosh K. Registration of airborne laser data to surfaces generated by Photogrammetric means[J]. International Archives of Photogrammetry and Remote Sensing, 1999,32(3/W14):95-99. |
[51] |
Stamos I, Liu L Y, Chen C, et al.Integrating automated range registration with multiview geometry for the photorealistic modeling of large-scale scenes[J]. International Journal of Computer Vision, 2008,78(2-3):237-260.
doi: 10.1007/s11263-007-0089-1 |
[52] |
Zheng S, Huang R, Zhou Y.Registration of optical images with lidar data and its accuracy assessment[J]. Photogrammetric Engineering & Remote Sensing, 2013,79(8):731-741.
doi: 10.14358/PERS.79.8.731 |
[53] | Li Y, Low K L.Automatic registration of color images to 3D geometry[C]. Proceedings of the 2009 Computer Graphics International Conference, Victoria, British Columbia, Canada, ACM, 2009:21-28. |
[54] |
陈驰,杨必胜,彭向阳.低空UAV激光点云和序列影像的自动配准方法[J].测绘学报,2015,44(5):518-525.
doi: 10.11947/j.AGCS.2015.20130558 |
[Chen C, Yang B S, Peng X Y.Automatic registration of low altitude uav sequent images and laser point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(5):518-525. ]
doi: 10.11947/j.AGCS.2015.20130558 |
|
[55] |
Yang B, Chen C.Automatic registration of UAV-borne sequent images and LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,101:262-274.
doi: 10.1016/j.isprsjprs.2014.12.025 |
[56] |
Baltsavias E P.Airborne laser scanning: basic relations and formulas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54(2):199-214.
doi: 10.1016/S0924-2716(99)00015-5 |
[57] | McGlone J C. Manual of photogrammetry, 6th edition[M]. Bethesda: American Society for Photogrammetry and Remote Sensing Publishing, 2013. |
[58] | Gneeniss A, Mills J, Miller P.In-flight photogrammetric camera calibration and validation via complementary lidar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,100:3-13. |
[59] | 陈为民,聂倩,林昀. 基于罗德里格矩阵的车载激光点云与全景影像配准研究[J].测绘通报,2013(11):21-24. |
[ Chen W M, Nie Q, Lin Y.Research on registration of vehicle-borne laser point clouds and panoramic images based on lodrigues matrix transformation[J]. Bulletin of Surveying and Mapping, 2013,11:21-24. ] | |
[60] |
盛庆红,陈姝文,费利佳,等.基于Plücker直线的机载LiDAR点云与航空影像的配准[J].测绘学报,2015,44(7):761-767.
doi: 10.11947/j.AGCS.2015.20140123 |
[Sheng Q H, Chen S W, Fei L J, et al.Registration of aerial image with airborne lidar data based on plücker line[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(7):761-767. ]
doi: 10.11947/j.AGCS.2015.20140123 |
|
[61] | 王永波,杨化超,刘燕华,等.线状特征约束下基于四元数描述的LiDAR点云配准方法[J].武汉大学学报·信息科学版,2013,39(9):1057-1062. |
[Wang Y B, Yang H C, Liu Y H, et al.Linear-feature-constrained registration of lidar point cloud via quaternion[J]. Geomatics and Information Science of Wuhan University, 2013,38(9):1057-1062. ] | |
[62] |
Hatze H.High-precision three-dimensional photogrammetric calibration and object space reconstruction using a modified DLT-approach[J]. Journal of Biomechanics, 1988,21(7):533-538.
doi: 10.1016/0021-9290(88)90216-3 pmid: 3410856 |
[63] |
宋恒嘉. 车载激光点云和光学影像的配准方法研究[J].测绘通报,2014(1):67-70.
doi: 10.13474/j.cnki.11-2246.2014.0019 |
[Song H J.Registration of vehicle-borne laser point cloud and optical image[J]. Bulletin of Surveying and Mapping, 2014,1: 67-70. ]
doi: 10.13474/j.cnki.11-2246.2014.0019 |
|
[64] |
李根,费章君,杨仕友.基于几何成像模型的鱼眼镜头图像校正算法和技术研究[J].机电工程,2013,30(10):1268-1272.
doi: 10.3969/j.issn.1001-4551.2013.10.024 |
[Li G, Fei Z J, Yang S Y.Fish-eye image correction method and technique based on geometrical imaging model[J]. Journal of Mechanical & Electrical Engineering, 2013,30(10):1268-1272. ]
doi: 10.3969/j.issn.1001-4551.2013.10.024 |
|
[65] | 熊友谊. 地面激光扫描点云与鱼眼全景影像的配准与整合研究[D].北京:中国矿业大学(北京),2014. |
[Xiong Y Y. Research on data registration and integration of terrestrial laser scanning point clouds and fisheye panoramic images[D]. Beijing: China University of Mining and Technology(Beijing), 2014. ] | |
[66] | Szeliski R.Image alignment and stitching: A tutorial[J]. Foundations and Trends® in Computer Graphics and Vision, 2006,2(1):1-104. |
[67] |
聂倩,蔡元波,林昀,等.车载激光点云与全景影像的配准研究[J].遥感信息,2014,29(1):15-18.
doi: 10.3969/j.issn.1000-3177.2014.01.004 |
[Nei Q, Cai Y B, Lin Y, et al.Registration of vehicle-borne laser point clouds and panoramic images[J]. Remote Sensing Information, 2014,29(1):15-18. ]
doi: 10.3969/j.issn.1000-3177.2014.01.004 |
|
[68] |
刘全海,鲍秀武,李楼.激光点云与全景影像配准方法研究[J].现代测绘,2016,39(1):21-25.
doi: 10.3969/j.issn.1672-4097.2016.01.007 |
[Liu Q H, Bao X W, Li L.Research of registration based on panoramic images and laser point cloud[J]. Modern Surveying and Mapping, 2016,39(1):21-25. ]
doi: 10.3969/j.issn.1672-4097.2016.01.007 |
|
[69] | Swart A, Broere J, Veltkamp R, et al.Refined non-rigid registration of a panoramic image sequence to a LiDAR point cloud[C]. Photogrammetric Image Analysis, Springer, 2011:73-84. |
[70] | 张帆. 激光扫描数据三维建模中高保真度纹理重建研究[D].武汉:武汉大学,2008. |
[Zhang F.High fidelity texture reconstruction in 3d modeling from laser scanning data[D]. Wuhan: Wuhan University, 2008. ] | |
[71] |
Levenberg K.A method for the solution of certain non-linear problems in least squares[J]. Quarterly of applied mathematics, 1944,2(2):164-168.
doi: 10.1090/qam/10666 |
[72] |
Fischler M A, Bolles R C.Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981,24(6):381-395.
doi: 10.1145/358669.358692 |
[73] | 李德仁. 利用选择权迭代法进行粗差定位[J].武汉大学学报·信息科学版,1984,9(1):46-68. |
[Li D R.Gross error location by means of the iteration method with variable weights[J]. Geomatics and Information Science of Wuhan University, 1984,9(1):46-68.] | |
[74] |
Santamaría J, Cordón O, Damas S.A comparative study of state-of-the-art evolutionary image registration methods for 3D modeling[J]. Computer Vision and Image Understanding, 2011,115(9):1340-1354.
doi: 10.1016/j.cviu.2011.05.006 |
[75] |
Yang J, Li H, Campbell D, et al.Go-ICP: A globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(11):2241-2254.
doi: 10.1109/TPAMI.2015.2513405 pmid: 26731638 |
[76] |
Hel-Or Y, Hel-Or H, David E.Matching by tone mapping: Photometric invariant template matching[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2014,36(2):317-330.
doi: 10.1109/TPAMI.2013.138 pmid: 24356352 |
[77] |
Tagare H D, Rao M.Why does mutual-information work for image registration? A deterministic explanation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2015,37(6):1286-1296.
doi: 10.1109/TPAMI.2014.2361512 pmid: 26357349 |
[78] | Gelfand N, Ikemoto L, Rusinkiewicz S, et al.Geometrically stable sampling for the ICP algorithm[C]. Fourth International Conference on 3-D Digital Imaging and Modeling, Proceedings, 2003:260-267. |
[79] |
Gressin A, Mallet C, Demantké J, et al.Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,79(I-3):240-251.
doi: 10.5194/isprsannals-I-3-111-2012 |
[80] | Rusinkiewicz S., Levoy M.Efficient variants of the ICP algorithm[C]. Third International Conference on 3-D Digital Imaging and Modeling, Proceedings, 2001:145-152. |
[1] | 陈科, 管海燕, 雷相达, 曹爽. 基于特征增强核点卷积网络的多光谱LiDAR点云分类方法[J]. 地球信息科学学报, 2023, 25(5): 1075-1087. |
[2] | 胡校飞, 周杨, 蓝朝桢, 黄高爽, 赵璐颖. 结构语义辅助约束的数字孪生场景虚实配准方法[J]. 地球信息科学学报, 2023, 25(5): 883-895. |
[3] | 贝祎轩, 陈传法, 王鑫, 孙延宁, 何青鑫, 李坤禹. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276. |
[4] | 王龙号, 蓝朝桢, 姚富山, 侯慧太, 武蓓蓓. 多源遥感影像深度特征融合匹配算法[J]. 地球信息科学学报, 2023, 25(2): 380-395. |
[5] | 汪文琪, 李宗春, 付永健, 熊峰, 赵昭明, 何华. 融合点、体素和对象特征的多基元点云分类[J]. 地球信息科学学报, 2022, 24(2): 365-377. |
[6] | 刘亚坤, 李永强, 刘会云, 孙渡, 赵上斌. 基于改进RANSAC算法的复杂建筑物屋顶点云分割[J]. 地球信息科学学报, 2021, 23(8): 1497-1507. |
[7] | 刘亚坤, 刘会云, 李永强, 赵上斌, 杨亚伦. 基于多源激光点云融合的建筑物BIM建模[J]. 地球信息科学学报, 2021, 23(5): 763-772. |
[8] | 杨帅, 杨娜, 陈传法, 常兵涛, 高原, 郑婷婷. 顾及数据配准的江西省SRTM DEM精度评价和修正[J]. 地球信息科学学报, 2021, 23(5): 869-881. |
[9] | 陆大进, 黎东, 朱笑笑, 聂胜, 周国清, 张兴忆, 杨超. 基于卷积神经网络的ICESat-2光子点云去噪分类[J]. 地球信息科学学报, 2021, 23(11): 2086-2095. |
[10] | 王广帅, 万一, 张永军. 交叉点结构特征约束的机载LiDAR点云与多视角航空影像配准[J]. 地球信息科学学报, 2020, 22(9): 1868-1877. |
[11] | 张永军, 黄星北, 刘欣怡. 一种地形自适应的机载LiDAR点云正则化TPS滤波方法[J]. 地球信息科学学报, 2020, 22(4): 898-908. |
[12] | 李鹏鹏, 李永强, 蔡来良, 董亚涵, 范辉龙. 车载LiDAR点云中道路绿化带提取与动态分析[J]. 地球信息科学学报, 2020, 22(2): 268-278. |
[13] | 张明祥, 王泽根, 白茹月, 贾鸿顺. 一种由粗到精的光学与SAR遥感图像配准算法[J]. 地球信息科学学报, 2020, 22(11): 2238-2246. |
[14] | 方莉娜, 黄志文, 罗海峰, 陈崇成. 结合SVM与图匹配的车载激光点云道路标线识别[J]. 地球信息科学学报, 2019, 21(7): 994-1008. |
[15] | 武夕琳, 刘庆生, 刘高焕, 黄翀, 李贺. 高温热浪风险评估研究综述[J]. 地球信息科学学报, 2019, 21(7): 1029-1039. |
|