地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (7): 972-982.doi: 10.3724/SP.J.1047.2017.00972
杨珂含1,2(), 姚方方3, 董迪1,2, 董文1, 骆剑承1,*(
)
收稿日期:
2017-02-19
修回日期:
2017-03-29
出版日期:
2017-07-10
发布日期:
2017-07-10
作者简介:
作者简介:杨珂含(1992-),女,浙江宁波人,硕士生,研究方向为遥感信息提取与湖泊动态。E-mail:
基金资助:
YANG Kehan1,2(), YAO Fangfang3, DONG Di1,2, DONG Wen1, LUO Jiancheng1,*(
)
Received:
2017-02-19
Revised:
2017-03-29
Online:
2017-07-10
Published:
2017-07-10
Contact:
LUO Jiancheng
摘要:
高原湖泊的动态变化对区域水循环具有重要影响。受全球气候变化的影响,青藏高原湖泊自20世纪90年代开始呈现剧烈扩张趋势。为揭示近年来青藏高原湖泊面积的时空变化规律,本文提出了一种改进的半自动湖泊提取算法,结合环境减灾卫星(HJ-1A/1B)和Landsat系列卫星影像数据,对青藏高原内流流域中面积大于50 km2的127个湖泊进行了连续6年的动态监测,并分析了该区域2009-2014年湖泊面积时空变化特征。研究结果表明,该区域湖泊整体呈现显著扩张趋势,年均变化速率为231.89 km2yr-1(0.87 %yr-1),6年间湖泊面积扩张速率有所减缓。其中,扩张湖泊有104个,收缩湖泊有23个,变化速率分别为271.08 km2yr-1(1.02 % yr-1)和-39.19 km2yr-1(-0.15 %yr-1)。不同区域湖泊面积变化具有明显差异,主要表现为东部及北部大部分区域湖泊扩张,南部地区大部分湖泊面积稳定,萎缩湖泊主要分布于研究区四周。最后,本文通过分析冰川融水补给对湖泊面积变化的影响,发现存在冰川融水补给的湖泊面积变化率远大于不存在冰川融水补给的湖泊。由此可见,近年来冰川融水的增加是促进青藏高原内流流域湖泊扩张的主要因素之一。
杨珂含, 姚方方, 董迪, 董文, 骆剑承. 青藏高原湖泊面积动态监测[J]. 地球信息科学学报, 2017, 19(7): 972-982.DOI:10.3724/SP.J.1047.2017.00972
YANG Kehan,YAO Fangfang,DONG Di,DONG Wen,LUO Jiancheng. Spatiotemporal Monitoring of Lake Area Dynamics on the Tibetan Plateau[J]. Journal of Geo-information Science, 2017, 19(7): 972-982.DOI:10.3724/SP.J.1047.2017.00972
表1
大型湖泊(>500 km2)基本属性[25]
湖泊 | 湖泊类型 | 省份 | 纬度/°N | 经度/°E | 面积/km2 ② | 主要补给方式 |
---|---|---|---|---|---|---|
色林错① | 微咸水湖 | 西藏 | 32.1 | 89.1 | 2376 | 地表径流 |
纳木错 | 微咸水湖 | 西藏 | 30.7 | 90.6 | 2026 | 地表径流,湖面降水 |
昂拉仁错 | 微咸水湖 | 西藏 | 31.5 | 83.1 | 503 | 地表径流 |
扎日南木错 | 微咸水湖 | 西藏 | 30.9 | 85.6 | 1006 | 地表径流,湖面降水 |
当惹雍错 | 微咸水湖 | 西藏 | 31.1 | 86.6 | 846 | 地表径流 |
乌兰乌拉湖 | 微咸水湖 | 青海 | 34.8 | 90.5 | 634 | 地表径流,湖面降水 |
西金乌兰湖 | 盐湖 | 青海 | 35.3 | 90.2 | 532 | 地表径流 |
米提江占木错① | 咸水湖 | 青海、西藏 | 33.4 | 90.1 | 1038 | 冰川融水径流 |
阿雅克库木湖 | 盐湖 | 新疆 | 37.5 | 89.4 | 950 | 冰雪融水径流 |
阿其格库勒 | 盐湖 | 新疆 | 37.1 | 88.4 | 507 | 地表径流 |
表2
本文所使用的环境减灾卫星以及Landsat卫星影像列表
2009年 | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
传感器 | 轨道号 | 采集日期 | 传感器 | 轨道号 | 采集日期 | 传感器 | 轨道号 | 采集日期 | 传感器 | 轨道号 | 采集日期 | 传感器 | 轨道号 | 采集日期 | 传感器 | 轨道号 | 采集日期 | ||||
1A/CCD1 | 31/72 | 0927 | 1A/CCD1 | 31/72 | 0901 | 1A/CCD1 | 43/72 | 1012 | 1A/CCD1 | 30/72 | 0913 | 1A/CCD1 | 30/72 | 1010 | 1A/CCD1 | 33/76 | 1031 | ||||
1A/CCD1 | 34/80 | 1013 | 1A/CCD1 | 33/76 | 1026 | 1A/CCD1 | 44/73 | 1028 | 1A/CCD1 | 32/76 | 1002 | 1A/CCD1 | 30/76 | 1010 | 1A/CCD1 | 35/72 | 0918 | ||||
1A/CCD2 | 29/80 | 1108 | 1A/CCD1 | 34/80 | 1030 | 1A/CCD2 | 33/79 | 1014 | 1A/CCD1 | 33/68 | 1021 | 1A/CCD1 | 31/80 | 1010 | 1A/CCD1 | 45/72 | 1005 | ||||
1A/CCD2 | 34/74 | 1024 | 1A/CCD2 | 30/80 | 1029 | 1A/CCD2 | 40/76 | 1011 | 1A/CCD1 | 42/80 | 1022 | 1A/CCD1 | 48/72 | 1016 | 1A/CCD2 | 30/78 | 1111 | ||||
1A/CCD2 | 36/71 | 00927 | 1A/CCD2 | 31/73 | 1029 | 1A/CCD2 | 41/80 | 1023 | 1A/CCD1 | 47/72 | 930 | 1A/CCD2 | 34/69 | 1006 | 1A/CCD2 | 38/80 | 1112 | ||||
1A/CCD2 | 39/80 | 1013 | 1A/CCD2 | 35/72 | 901 | 1B/CCD1 | 29/72 | 1028 | 1A/CCD2 | 30/80 | 1020 | 1A/CCD2 | 35/72 | 1010 | 1A/CCD2 | 40/76 | 0918 | ||||
1A/CCD2 | 45/72 | 1006 | 1A/CCD2 | 38/76 | 1026 | 1B/CCD1 | 29/79 | 1024 | 1A/CCD2 | 31/76 | 0905 | 1A/CCD2 | 35/76 | 1010 | 1A/CCD2 | 45/76 | 1028 | ||||
1B/CCD1 | 34/68 | 1015 | 1A/CCD2 | 44/72 | 1019 | 1B/CCD1 | 36/72 | 1013 | 1A/CCD2 | 35/72 | 0913 | 1A/CCD2 | 35/80 | 1010 | 1B/CCD1 | 29/72 | 1009 | ||||
1B/CCD1 | 35/76 | 1015 | 1B/CCD1 | 41/76 | 1025 | 1B/CCD1 | 37/80 | 1029 | 1A/CCD2 | 35/76 | 0928 | 1A/CCD2 | 40/80 | 1026 | 1B/CCD1 | 36/68 | 1002 | ||||
1B/CCD1 | 38/72 | 926 | 1B/CCD1 | 41/80 | 1025 | 1B/CCD1 | 41/72 | 0920 | 1A/CCD2 | 37/80 | 1002 | 1A/CCD2 | 42/72 | 1007 | 1B/CCD1 | 36/72 | 1006 | ||||
1B/CCD2 | 28/76 | 0928 | 1B/CCD2 | 29/72 | 1019 | 1B/CCD2 | 30/76 | 0914 | 1A/CCD2 | 38/80 | 1021 | 1B/CCD1 | 37/72 | 1009 | 1B/CCD1 | 41/80 | 0917 | ||||
1B/CCD2 | 28/79 | 0928 | 1B/CCD2 | 35/69 | 1008 | 1B/CCD2 | 33/72 | 1012 | 1B/CCD1 | 37/72 | 0912 | 1B/CCD1 | 37/76 | 1009 | 1B/CCD2 | 30/76 | 1113 | ||||
1B/CCD2 | 33/72 | 1022 | 1B/CCD2 | 39/76 | 1015 | 1B/CCD2 | 34/68 | 1028 | 1B/CCD2 | 41/72 | 0927 | OLI | 138/39 | 1012 | 1B/CCD2 | 31/70 | 0919 | ||||
1B/CCD2 | 39/76 | 1015 | 1B/CCD2 | 45/76 | 1025 | TM | 138/35 | 1108 | 1B/CCD2 | 43/76 | 1001 | 1B/CCD2 | 33/80 | 1005 | |||||||
1B/CCD2 | 43/72 | 926 | TM | 138/39 | 1020 | 1B/CCD2 | 34/76 | 1013 | |||||||||||||
1B/CCD2 | 43/76 | 1031 | TM | 141/36 | 1025 | 1B/CCD2 | 41/72 | 1006 | |||||||||||||
TM | 138/39 | 0830① | TM | 143/35 | 1108 | 1B/CCD2 | 41/76 | 1006 | |||||||||||||
TM | 140/35 | 0929 | TM | 143/36 | 1108 | ||||||||||||||||
TM | 144/36 | 0928 |
表3
2009-2014年大型湖泊面积变化
湖泊 | 湖泊面积/km2 | 年变化率/%yr-1 | |||||
---|---|---|---|---|---|---|---|
2009年 | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | ||
色林错 | 2345.04 | 2346.92 | 2374.66 | 2381.37 | 2403.01 | 2402.71 | 0.56* |
纳木错 | 2024.41 | 2024.58 | 2026.43 | 2026.61 | 2026.79 | 2027.22 | 0.03* |
扎日南木错 | 1005.03 | 1005.00 | 1006.04 | 1005.76 | 1005.23 | 1006.39 | 0.02 |
当惹雍错 | 844.10 | 847.78 | 839.91 | 853.57 | 848.94 | 842.71 | 0.03 |
昂拉仁错 | 502.28 | 505.06 | 503.39 | 503.17 | 503.72 | 500.43 | -0.08 |
乌兰乌拉湖 | 600.04 | 616.74 | 640.81 | 649.84 | 643.31 | 655.97 | 1.66* |
西金乌兰湖 | 498.89 | 517.15 | 539.34 | 547.91 | 537.90 | 548.17 | 1.71* |
米提江占木错 | 1014.70 | 1022.26 | 1036.00 | 1046.66 | 1054.94 | 1056.13 | 0.87* |
阿雅克库木湖 | 871.57 | 931.37 | 947.93 | 975.92 | 986.22 | 985.80 | 2.30* |
阿其格库勒 | 469.14 | 486.07 | 497.45 | 516.51 | 532.14 | 542.05 | 2.94* |
[15] | [ Bian D, La B, Wang C Y, et al.The Response of Water Level of Selin Co to Climate Change during 1975-2008[J]. Acta Geographica Sinica, 2010,65(3):313-319. ] |
[16] |
Huang L, Liu J, Shao Q, et al.Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau[J]. Climatic change, 2011,109(3):479-502.
doi: 10.1007/s10584-011-0032-x |
[17] | Yao T, Pu J, Lu A, et al.Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions[J]. Arctic, Antarctic, and Alpine Research, 2007,39(4):642-650. |
[18] |
Zhu L, Xie M, Wu Y.Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau[J]. Chinese Science Bulletin, 2010,55(13):1294-1303.
doi: 10.1007/s11434-010-0015-8 |
[19] |
Lei Y, Yao T, Bird B W, et al.Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution[J]. Journal of Hydrology, 2013,483:61-67.
doi: 10.1016/j.jhydrol.2013.01.003 |
[20] |
姜永见,李世杰,沈德福,等.青藏高原近 40 年来气候变化特征及湖泊环境响应[J].地理科学,2012,32(12):1503-1512.
doi: 10.1007/s11783-011-0280-z |
[ Jiang Y J, Li S J, Shen D F, et al.Climate change and its impact on the lake environment in the Tibetan Plateau in 1971-2008[J]. Scientia Geograohica Sinica, 2012,32(12):1503-1512. ]
doi: 10.1007/s11783-011-0280-z |
|
[21] |
朱大岗,孟宪刚,郑达兴,等.青藏高原近 25 年来河流,湖泊的变迁及其影响因素[J].地质通报,2007,26(1):22-30.
doi: 10.3969/j.issn.1671-2552.2007.01.004 |
[ Zhu D G, Meng X G, Zheng D X, et al.Changes of rivers and lakes on the Qinghai-Tibet Plateau in the past 25 years and their influence factors[J]. Geological Bulletin of China, 2007,26(1):22-30. ]
doi: 10.3969/j.issn.1671-2552.2007.01.004 |
|
[22] | Lehner B, Verdin K, Jarvis A.HydroSHEDS technical documentation, version 1.0[R]. World Wildlife Fund US, Washington, DC. 2006,1-27. |
[1] | Rizvi J.Trans-Himalayan Caravans: Merchant Princes and Peasant Traders in Ladakh[M]. Oxford: Oxford University Press, 2001. |
[2] | 万玮,肖鹏峰,冯学智,等.近 30 年来青藏高原羌塘地区东南部湖泊变化遥感分析[J].湖泊科学,2010,22(6):874-81. |
[23] |
Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, et al.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012,2(9):663-667.
doi: 10.1038/nclimate1580 |
[24] |
吴绍洪,尹云鹤,郑度,等.青藏高原近 30 年气候变化趋势[J].地理学报,2005,60(1):3-11.
doi: 10.3321/j.issn:0375-5444.2005.01.001 |
[2] | [ Wan W, Xiao P F, Feng X Z, et al, Remote sensing analysis for changes of lakes in the southeast of Qiangtang area, Qing-hai-Tibet Plateau in recent 30 years[J]. Journal of Lake Science, 2010,22(6):874-81. ] |
[3] | 李均力,盛永伟.1976-2009年青藏高原内陆湖泊变化的时空格局与过程[J].干旱区研究,2013,30(7):571-81. |
[24] |
[ Wu S H, Yin Y H, Zhen D, et al.Climate changes in the tibetan Plateau during the Last Three Decades[J]. Acta Geographica Sinica, 2005,60(1):3-11. ]
doi: 10.3321/j.issn:0375-5444.2005.01.001 |
[25] | 王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998. |
[3] | [ Li J L, Sheng Y W.Spatiotemporal pattern and process of inland lake change in the Qinghai-Tibetan plateau during the period of 1976-2009[J]. Arid Zone Research, 2013,30(7):571-81. ] |
[4] |
Liao J, Shen G, Li Y.Lake variations in response to climate change in the Tibetan Plateau in the past 40 years[J]. International Journal of Digital Earth, 2013,6(6):534-49.
doi: 10.1080/17538947.2012.656290 |
[25] | [ Wang S M, Dou H S.Lakes in China[M]. Beijing:Science Press, 1998. ] |
[26] | Guo W, Xu J, Liu S, et al. The second glacier inventory dataset of China (Version 1.0)[R]. Cold and Arid Regions Science Data Center at Lanzhou: Lanzhou, China. 2014. |
[5] |
闫立娟,郑绵平,魏乐军.近 40 年来青藏高原湖泊变迁及其对气候变化的响应[J].地学前缘,2016,23(4):310-23.
doi: 10.13745/j.esf.2016.04.027 |
[ Yan L J, Zheng M P, Wei L J.Change of the lakes in Tibetan Plateau and its response to climate in the past forty years[J]. Earth Science Frontiers, 2016, 23(4):310-23. ]
doi: 10.13745/j.esf.2016.04.027 |
|
[6] |
董斯扬,薛娴,尤全刚,等.近 40 年青藏高原湖泊面积变化遥感分析[J].湖泊科学,2014,26(4):535-44.
doi: 10.18307/2014.0407 |
[ Dong S Y, Xue X, You Q G, et al.Remote Sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years[J]. Journal of Lake Science, 2014,26(4):535-44. ]
doi: 10.18307/2014.0407 |
|
[27] |
Phan V, Lindenbergh R, Menenti M.Geometric dependency of Tibetan lakes on glacial runoff[J]. Hydrology and Earth System Sciences, 2013,17(10):4061.
doi: 10.5194/hessd-10-729-2013 |
[28] |
边金虎,李爱农,雷光斌,等.环境减灾卫星多光谱 CCD 影像自动几何精纠正与正射校正系统[J].生态学报,2014,34(24):7181-91.
doi: 10.5846/stxb201310122446 |
[ Bian J H, Li A N, Lei G B, et al.Auto-registration and orthorectification system for the HJ-1A/B CCD images[J]. Acta Ecologica Sinica, 2014,34(24):7181-7191. ]
doi: 10.5846/stxb201310122446 |
|
[29] |
Tucker C J, Grant D M, Dykstra J D.NASA’s global orthorectified Landsat data set[J]. Photogrammetric Engineering & Remote Sensing, 2004,70(3):313-22.
doi: 10.14358/PERS.70.3.313 |
[7] |
Song C, Huang B, Ke L, et al.Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,92:26-37.
doi: 10.1016/j.isprsjprs.2014.03.001 |
[8] |
车向红,冯敏,姜浩,等.2000-2013 年青藏高原湖泊面积 MODIS 遥感监测分析[J].地球信息科学学报,2015,17(1):99-107.
doi: 10.3724/SP.J.1047.2015.00099 |
[30] |
McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
doi: 10.1080/01431169608948714 |
[31] |
Xu H.Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
doi: 10.1080/01431160600589179 |
[8] |
[ Che X H, Feng M, Jiang H, et al.Detection and Analysis of Qinghai-Tibet Plateau Lake Area from 2000-2013[J]. Journal of Geo-information Science, 2015,17(1):99-107. ]
doi: 10.3724/SP.J.1047.2015.00099 |
[9] | 姚晓军,刘时银,李龙,等.近 40 年可可西里地区湖泊时空变化特征[J].地理学报,2013,68(7):886-96. |
[32] | 徐涵秋. 从增强型水体指数分析遥感水体指数的创建[J].地球信息科学学报,2012,10(6):776-80. |
[ Xu H Q.Comment on the Enhanced Water Index(EWI):A Discussion on the Creation of a Water Index[J]. Journal of Geo-Infornation Science, 2012,10(6):776-780. ] | |
[9] | [ Yao X J, Liu S Y, Li L, et al.Spatial-temporal variations of lake area in Hoh Xil region in the past 40 years[J]. Acta Geographica Sinica, 2013,68(7):886-96. ] |
[10] |
Li Y, Liao J, Guo H, et al.Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010[J]. PloS one, 2014,9(11): e111890.
doi: 10.1371/journal.pone.0111890 pmid: 25372787 |
[33] |
Yao F, Wang C, Dong D, Luo J, Shen Z, Yang K.High-resolution mapping of urban surface water using ZY-3 multi-spectral imagery[J]. Remote Sensing, 2015,7(9):12336-12355.
doi: 10.3390/rs70912336 |
[34] |
骆剑承,盛永伟,沈占锋,等.分步迭代的多光谱遥感水体信息高精度自动提取[J].遥感学报,2009,13(4):610-615.
doi: 10.11834/jrs.20090405 |
[11] |
李均力,盛永伟,骆剑承,等.青藏高原内陆湖泊变化的遥感制图[J].湖泊科学,2011,23(3):311-20.
doi: 10.18307/2011.0301 |
[ Li J L, Sheng Y W, Luo J C, et al.Remotely sensed mapping of inland lake area changes in the Tibetan Plateau[J]. Journal of Lake Science, 2011,23(3):311-20. ]
doi: 10.18307/2011.0301 |
|
[12] | Zhang G, Yao T, Xie H, et al.Lakes’ state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 2014,59(24):3010-3021. |
[13] |
闫立娟,齐文.青藏高原湖泊遥感信息提取及湖面动态变化趋势研究[J].地球学报,2012,33(1):65-74.
doi: 10.3975/cagsb.2012.01.08 |
[34] |
[ Luo J C, Sheng Y W, Shen Z F, et al.Automatic and high-precise extraction for water information from multispectral images with the step-by-step iterative transformation mechanism[J]. Journal of Remote Sensing, 2009,13(4):610-615. ]
doi: 10.11834/jrs.20090405 |
[35] |
Wang J, Sheng Y, Tong TSD.Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam[J]. Remote Sensing of Environment, 2014,152:251-269.
doi: 10.1016/j.rse.2014.06.004 |
[13] |
[ Yan L J, Qi W.Lakes in Tibetan Plateau Extraction from Remote Sensing and Their Dynamic Changes[J]. Acta Geosicentica Sinica, 2012,33(1):65-74. ]
doi: 10.3975/cagsb.2012.01.08 |
[14] |
张继承,姜琦刚,李远华,等.基于RS/GIS 的西藏地区湖泊变化动态监测及气候背景[J].地球科学与环境学报,2008,30(1):87-93.
doi: 10.3969/j.issn.1672-6561.2008.01.016 |
[36] |
Wan W, Long D, Hong Y, et al.A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014[J]. Scientific Data, 2016,3:160039.
doi: 10.1038/sdata.2016.39 pmid: 4915272 |
[37] |
刘宝康,李林,杜玉娥,等.青藏高原可可西里卓乃湖溃堤成因及其影响分析[J].冰川冻土,2016,38(2):305-311.
doi: 10.7522/j.issn.1000-0240.2016.0033 |
[14] |
[ Zhang J C, Jiang Q G, Li Y H, et al.Dynamic monitoring and climate background of lake changes in Tibet based on RS/GIS[J]. Journal of Earth Sciences and Environment, 2008,30(1):87-93. ]
doi: 10.3969/j.issn.1672-6561.2008.01.016 |
[15] | 边多,拉巴,王彩云,等.1975-2008 年西藏色林错湖面变化对气候变化的响应[J].地理学报,2010,65(3):313-319. |
[37] |
[ Liu B K, Li L, Du Y E, et al.Causes of the outburst of Zonag Lake in Hoh Xil, Tibetan Plateau, and its impact on surrounding environment[J]. Journal of Glaciology and Geocryology, 2016,38(2):305-311. ]
doi: 10.7522/j.issn.1000-0240.2016.0033 |
[38] |
吴艳红,朱立平,叶庆华,等.纳木错流域近 30 年来湖泊—冰川变化对气候的响应[J].地理学报,2007,62(3):301-310.
doi: 10.3321/j.issn:0375-5444.2007.03.007 |
[ Wu Y H, Zhu L P, Ye Q H, et al.The response of Lake-Glacier area change to climate variations in Namco Basin, Central Tibetan Plateau during the Last Three Decades[J]. Acta Geographica Sinica, 2007,62(3):301-310. ]
doi: 10.3321/j.issn:0375-5444.2007.03.007 |
|
[39] | 马颖钊,易朝路,吴家章,等.1970-2009年纳木错湖泊面积扩张的遥感卫星观测证据及原因之商榷[J].冰川冻土,2012,34(1):81-88. |
[ Ma Y Z, Yi C L, Wu J Z, et al.Lake surface expension of Nam Co during 1970-2009: Evidence of satellite remote sensing and cause analysis[J]. Journal of Glaciology and Geocryology, 2012,34(1):81-88. ] | |
[40] | 拉巴,陈涛,杨秀海.基于多源卫星数据扎日南木错湖面变化和气象成因分析[J].湖泊科学,2014,26(6):963-970. |
[ La B, Chen T, Yang X H.Lake area variation of Thari Namtso and its meteorological causes based on multi-sensor satellite data[J]. Journal of Lake Sciences, 2014,26(6):963-970. ] | |
[41] |
拉巴,边多,陈涛.基于TM 影像的西藏当惹雍错湖面积变化及可能成因[J].气象科技,2012,40(4):685-688.
doi: 10.3969/j.issn.1671-6345.2012.04.031 |
[ La B, Bian D, Chen T.Possible causes of area change of lake Tangra Yumco, Tibet Based on TM Images[J]. Meteorological Science and Technology, 2012,40(4):685-688. ]
doi: 10.3969/j.issn.1671-6345.2012.04.031 |
|
[42] | 张淑萍,张虎才,陈光杰,等. 1973-2010 年青藏高原西部昂拉仁错流域气候,冰川变化与湖泊响应[J].冰川冻土,2012,34(2):267-276. |
[ Zhang S P, Zhang H C, Chen G J, et al.Climate and glacier changes and lake response in the NganglaRingsto Catchment in Western Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012,34(2):267-276. ] | |
[43] | 姜丽光,姚治君,刘兆飞,等. 1976-2012 年可可西里乌兰乌拉湖面积和边界变化及其原因[J].湿地科学,2014,12(2):155-162. |
[ Jiang L G, Yao Z J, Liu Z F, et al.Variation of lake area and boundary of Ulan Ul Lake in Hoh Xil Region during 1976-2012 and Their Reasons[J]. Wetland Science, 2014,12(2):155-162. ] | |
[44] |
闰立娟,郑绵平.我国蒙新地区近 40 年来湖泊动态变化与气候耦合[J].地球学报,2014,35(4):463-472.
doi: 10.3975/cagsb.2014.04.08 |
[ Run L J, Zhen M P.Dynamic changes of lakes in Inner Mongolia-Xinjiang region and the climate interaction in the past forty years[J]. Acta Geoscientica Sinica, 2014,35(4):463-472. ]
doi: 10.3975/cagsb.2014.04.08 |
|
[45] |
Song C, Huang B, Richards K, et al.Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes[J]. Water Resources Research, 2014,50(4):3170-3186.
doi: 10.1002/2013WR014724 |
[46] |
鲁安新,姚檀栋,王丽红,等.青藏高原典型冰川和湖泊变化遥感研究[J].冰川冻土,2005,27(6):783-92.
doi: 10.3969/j.issn.1000-0240.2005.06.001 |
[ Lu A X, Yao T D, Wang L H, et al.Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing[J]. Journal of Glaciology and Geocryology, 2005,27(6):783-792. ]
doi: 10.3969/j.issn.1000-0240.2005.06.001 |
[1] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[2] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[3] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[4] | 高鹏飞, 曹雪峰, 李科, 游雄. 融合多元稀疏特征与阶层深度特征的遥感影像目标检测[J]. 地球信息科学学报, 2023, 25(3): 638-653. |
[5] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[6] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[7] | 饶子昱, 卢俊, 郭海涛, 余东行, 侯青峰. 利用视角转换的跨视角影像匹配方法[J]. 地球信息科学学报, 2023, 25(2): 368-379. |
[8] | 王龙号, 蓝朝桢, 姚富山, 侯慧太, 武蓓蓓. 多源遥感影像深度特征融合匹配算法[J]. 地球信息科学学报, 2023, 25(2): 380-395. |
[9] | 甘聪聪, 邱炳文, 张建阳, 姚铖鑫, 叶智燕, 黄姮, 黄莹泽, 彭玉凤, 林艺真, 林多多, 苏中豪. 基于Sentinel-1/2动态耦合移栽期特征的水稻种植模式识别[J]. 地球信息科学学报, 2023, 25(1): 153-162. |
[10] | 于明洋, 陈肖娴, 张文焯, 刘耀辉. 融合网格注意力阀门和特征金字塔结构的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(9): 1785-1802. |
[11] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[12] | 吕爱锋, 亓珊珊. 遥感及再分析降水产品在缺资料干旱内陆盆地的适用性评估[J]. 地球信息科学学报, 2022, 24(9): 1817-1834. |
[13] | 廖周伟, 关燕宁, 郭杉, 蔡丹路, 于敏, 姚武韬, 张春燕, 邓锐. 基于网格的街区尺度城市绿度度量方法[J]. 地球信息科学学报, 2022, 24(8): 1475-1487. |
[14] | 闵杰, 张永生, 于英, 吕可枫, 王自全, 张磊. 增强型遥感影像SRGAN算法及其在三维重建精度提升中的应用[J]. 地球信息科学学报, 2022, 24(8): 1631-1644. |
[15] | 彭瑞, 赵文智, 张立强, 陈学泓. 基于多尺度对比学习的弱监督遥感场景分类[J]. 地球信息科学学报, 2022, 24(7): 1375-1390. |
|