地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (10): 1355-1363.doi: 10.3724/SP.J.1047.2017.01355
收稿日期:
2017-01-19
修回日期:
2017-06-14
出版日期:
2017-10-20
发布日期:
2017-10-20
作者简介:
作者简介:王恩鲁(1991-),男,硕士生,主要从事遥感信息处理与应用方面的研究。E-mail:
基金资助:
WANG Enlu(), WANG Xiaoqin*(
), CHEN Yunzhi
Received:
2017-01-19
Revised:
2017-06-14
Online:
2017-10-20
Published:
2017-10-20
Contact:
WANG Xiaoqin
摘要:
断点检测技术能够提取时间序列数据中发生变化的信息,对时序变化特征的研究和分析具有重要意义。在植被变化研究中,它有助于发掘时序植被参数数据中潜在的连续变化信息(如火烧、砍伐和病虫害等),具有较广阔的应用前景。本文以2000-2015年空间分辨率为250 m的福建省长汀县MODIS NDVI遥感时序产品计算的植被覆盖度(Vegetation Fractional Coverage, VFC)为数据源,利用DBEST(Detecting Breakpoints and Estimating Segments in Trend)模型开展植被变化断点检测与分析,并讨论了模型参数对实验结果的影响。经研究发现,使用DBEST推荐的第一、第二水平变化阈值(即θ1、θ2分别为0.1和0.2)可较好地界定植被覆盖度的变化级别;变化持续时长φ可根据所用时序数据的类型和当地植被变化特点进行调整,表示断点变化级别的阈值β也可根据研究目标自定义;本文φ取3,β取0.2,实验得到断点位置和断点类型的精确度分别为92%和80%,表明DBEST模型能够很好地提取时间序列VFC数据中的重要变化信息,与当地实际情况比较吻合。
王恩鲁, 汪小钦, 陈芸芝. 时间序列植被覆盖度断点检测方法研究[J]. 地球信息科学学报, 2017, 19(10): 1355-1363.DOI:10.3724/SP.J.1047.2017.01355
WANG Enlu,WANG Xiaoqin,CHEN Yunzhi. The Breakpoints Detection Method Using Time Series of Vegetation Fractional Coverage[J]. Journal of Geo-information Science, 2017, 19(10): 1355-1363.DOI:10.3724/SP.J.1047.2017.01355
[10] |
Goodwin N R, Coops N C, Wulder M A, et al.Estimation of insect infestation dynamics using a temporal sequence of Landsat data[J]. Remote Sensing of Environment, 2008,112(9):3680-3689.
doi: 10.1016/j.rse.2008.05.005 |
[11] |
Gong J, Ma G, Zhou Q.A review of multi-temporal remote sensing data change detection algorithms[J]. Protein Expression & Purification, 2008,82(2):308-316.
doi: 10.1016/j.pep.2012.01.018 |
[12] | 周顺武. 近50年拉萨夏季降水趋势和突变分析[J].西藏科技,1999(4):35-39. |
[ Zhou S W.Analysis of climatic trend and jump of summer rainfall in Lhasa during recent 50 years[J]. Tibet Science & Technology, 1999,4:35-39. ] | |
[13] |
Goossens C H, Berger A.Annual and seasonal climatic variations over the northern hemisphere and europe during the last century[J]. Annales Geophysicae, 1986,4(4):385-400.
doi: 10.1016/0040-1951(86)90317-3 |
[14] | 孟猛,宗美娟.基于NDVI的气候突变对植被影响研究[J].安徽农业科学,2011,39(24):14942-14944. |
[ Meng M, Zong M J.Study on the influence of climate abrupt variation on the vegetation based on NDVI[J]. Journal of Anhui Agricultural Sciences, 2011,39(24):14942-14944. ] | |
[15] |
王园香,唐世浩,郑照军. 1982-2006年中国5-9月的NDVI变化与人类活动影响分析[J].地球信息科学学报, 2015,17(11):1333-1340.
doi: 10.3724/SP.J.1047.2015.01333 |
[ Wang Y X, Tang S H, Zheng Z J.Analysis of NDVI and the impact of human activity in China from May to September during 1982 to 2006[J]. Journal of Geo-information Science, 2015,17(11):1333-1340. ]
doi: 10.3724/SP.J.1047.2015.01333 |
|
[16] | Bleakley K, Vert J P. The group fused Lasso for multiple change-point detection[EB/OL]. (2011-06-21) [2017-06-14]. https://arxiv.org/pdf/1106.4199v1.pdf |
[17] |
汪丽娜,陈晓宏,李粤安,等.水文时间序列突变点分析的启发式分割方法[J].人民长江,2009,40(9):15-17.
doi: 10.3969/j.issn.1001-4179.2009.09.006 |
[ Wang L N, Chen X H, Li Y A, et al.Heuristic segmentation method for change-point analysis of hydrological time series[J]. Yangtze River, 2009,40(9):15-17. ]
doi: 10.3969/j.issn.1001-4179.2009.09.006 |
|
[18] |
封国林,龚志强,董文杰,等.基于启发式分割算法的气候突变检测研究[J].物理学报, 2005,54(11):5494-5499. ]
doi: 10.7498/aps.54.5494 |
[ Feng G L, Gong Z Q, Dong W J, et al. Abrupt climate change detection based on heuristic segmentation algorithm[J]. Acta Physica Sinica, 2005,54(11):5494-5499. ]
doi: 10.7498/aps.54.5494 |
|
[19] |
Zhao X, Chu P S.Bayesian change point analysis for extreme events (typhoons, heavy rainfall, and heat waves): an RJMCMC approach.[J]. Journal of Climate, 2010,23(5):1034.
doi: 10.1175/2009JCLI2597.1 |
[20] |
Kennedy R E, Cohen W B, Schroeder T A.Trajectory-based change detection for automated characterization of forest disturbance dynamics[J]. Remote Sensing of Environment, 2007,110:370-386.
doi: 10.1016/j.rse.2007.03.010 |
[1] |
Pratt K B, Fink E.Search for Patterns in compressed time series[J]. International Journal of Image and Graphics, 2011,2(1):89-106.
doi: 10.1142/S0219467802000482 |
[2] | 廖俊,周中良,寇英信,等.一种基于重要点的时间序列分割方法[J].计算机工程与应用,2011,47(24):166-170. |
[21] |
Kennedy R E, Yang Z Q, Cohen W B.Detecting trends in forest disturbance and recovery using yearly Landsat time series:1. LandTrendr-Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010,114:2897-2910.
doi: 10.1016/j.rse.2010.07.008 |
[22] |
Cohen W B, Yang Z Q, Kennedy R.Detecting trends in forest disturbance and recovery using yearly Landsat time series:2. TimeSync - Tools for calibration and validation[J]. Remote Sensing of Environment, 2010,114:2911-2924.
doi: 10.1016/j.rse.2010.07.010 |
[2] | [ Liao J, Zhou Z L, Kou Y X, et al.Method for time series segment based on important point[J]. Computer Engineering and Applications, 2011,47(24):166-170. ] |
[3] | 梁爽,彭书时,林鑫,等. 1982-2010年全国草地生长时空变化[J].北京大学学报(自然科学版),2013,49(2):311-319. |
[23] |
Verbesselt J, Hyndman R, Newnham G, et al.Detecting trend and seasonal changes in satellite image time series[J]. Remote Sensing of Environment, 2010,114:106-115.
doi: 10.1016/j.rse.2009.08.014 |
[24] |
Verbesselt J, Hyndman R, Zeilies A, et al.Phenological change detection while accounting for abrupt and gradual trends in satellite image time series[J]. Remote Sensing of Environment, 2010,114:2970-2980.
doi: 10.1016/j.rse.2010.08.003 |
[3] | [ Liang S, Peng S S, Lin X, et al.NDVI-Based spatial-temporal change in grassland growth of China from 1982 to 2010[J]. Acta Scientiarum Naturalium Universitatis Pekimensis, 2013,49(2):311-319. ] |
[4] |
丁明军,张镱锂,刘林山. 1982-2009年青藏高原草地覆盖度时空变化特征[J].自然资源学报,2010,25(12):2114-2120.
doi: 10.11849/zrzyxb.2010.12.012 |
[25] |
Jamali S, Jonsson P, Eklundh L, et al.Detecting changes in vegetation trends using time series segmentation[J]. Remote Sensing of Environment, 2015,156:182-195.
doi: 10.1016/j.rse.2014.09.010 |
[26] | 佟斯琴,包玉海,张巧凤,等.基于像元二分法和强度分析方法的内蒙古植被覆盖度时空变化规律分析[J].生态环境学报,2016,25(5):737-743. |
[4] |
[ Ding M J, Zhang Y L, Liu L S.Temporal and spatial distribution of grassland coverage change in Tibetan plateau since 1982[J]. Journal of Natural Resources, 2010,25(12):2114-2120. ]
doi: 10.11849/zrzyxb.2010.12.012 |
[5] |
孙庆龄,李宝林,许丽丽,等. 2000-2013年三江源植被NDVI变化趋势及影响因素分析[J].地球信息科学学报, 2016,18(12):1707-1716.
doi: 10.3724/SP.J.1047.2016.01707 |
[26] | [ Tong S Q, Bao Y H, Zhang Q F, et al.Spatiotemporal changes of vegetation coverage in inner Mongolia based on the dimidiate pixel model and intensity analysis[J]. Ecology and Environmental Sciences, 2016,25(5):737-743. ] |
[27] |
D. Stow, S. Daeschner, A. Hope, et al.Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s[J]. International Journal of Remote Sensing, 2003,24(5):1111-1117.
doi: 10.1080/0143116021000020144 |
[5] |
[ Sun Q L, Li B L, Xu L L, et al.Analysis of NDVI change trend and its impact factors in the three-river headwater region from 2000 to 2013[J]. Journal of Geo-information Science, 2016,18(12):1707-1716. ]
doi: 10.3724/SP.J.1047.2016.01707 |
[6] |
Abbes A B, Essid H, Farah I R, et al.Rare events detection in NDVI time-Series using Jarque-Bera Test[J]. Geoscience & Remote Sensing Symposium, 2015:338-341.
doi: 10.1109/IGARSS.2015.7325769 |
[28] |
宋怡,马明国.基于Spot Vegetation数据的中国西北植被覆盖变化分析[J].中国沙漠, 2007,27(1):90-92.
doi: 10.3321/j.issn:1000-694X.2007.01.021 |
[ Song Y, Ma M G.Study on vegetation cover change in northwest China based on SPOT vegetation data[J]. Journal of Desert Research, 2007,27(1):90-92. ]
doi: 10.3321/j.issn:1000-694X.2007.01.021 |
|
[7] | 杨伟,张树文,姜晓丽,等.基于MODIS时序数据的黑龙江流域火烧迹地提取研究[J].生态学报,2015,35(17):1-11. |
[ Yang W, Zhang S W, Jiang X L, et al.The burned area mapping for Heilongjiang basin based on MODIS time series data[J]. Acta Ecologica Sinica, 2015,35(17):1-11. ] | |
[8] |
Cai S, Liu D.Detecting change dates from dense satellite time series using a Sub-Annual change detection algorithm[J]. Remote Sensing, 2015,7:8705-8727.
doi: 10.3390/rs70708705 |
[9] |
Yuan Y, Meng Y, Lin L, et al.Continuous change detection and classification using hidden Markov model: A case study for monitoring urban encroachment onto farmland in Beijing[J]. Remote Sensing, 2015,7:15318-15339.
doi: 10.3390/rs71115318 |
[1] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[2] | 巫磊, 吴文挺. GEE平台下结合滤波算法和植被物候特征的互花米草遥感提取最优时间窗口确定[J]. 地球信息科学学报, 2023, 25(3): 606-624. |
[3] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[4] | 黎煜昭, 刘启亮, 邓敏, 徐锐, 王茂洋, 杨海南. 基于物理约束GRU神经网络的河流水质预测模型[J]. 地球信息科学学报, 2023, 25(1): 102-114. |
[5] | 王晓蕾, 石守海. 基于GEE的黄河流域植被时空变化及其地形效应研究[J]. 地球信息科学学报, 2022, 24(6): 1087-1098. |
[6] | 耿佳辰, 沈石, 程昌秀. “十三五”时期黄河流域PM2.5时空分布规律及多尺度社会经济影响机制分析[J]. 地球信息科学学报, 2022, 24(6): 1163-1175. |
[7] | 杨泽航, 王文, 鲍健雄. 融合多源遥感数据的黑河中游地区生长季早期作物识别[J]. 地球信息科学学报, 2022, 24(5): 996-1008. |
[8] | 张雄一, 邵全琴, 宁佳, 杨雪清, 巩国丽, 刘国波. 三北工程区植被恢复对土壤风蚀的影响及植被恢复潜力研究[J]. 地球信息科学学报, 2022, 24(11): 2153-2170. |
[9] | 李玉, 张友水. 植被与不透水面的降温和增温效率分析方法[J]. 地球信息科学学报, 2021, 23(9): 1548-1558. |
[10] | 卞萌, 郭树毅, 王威, 欧阳昱晖, 黄颖菁, 费腾. 融合植被遥感数据的北京市次日花粉浓度预测[J]. 地球信息科学学报, 2021, 23(9): 1705-1713. |
[11] | 葛中曦, 黄静, 赖佩玉, 郝斌飞, 赵银军, 马明国. 耕地复种指数遥感监测研究进展[J]. 地球信息科学学报, 2021, 23(7): 1169-1184. |
[12] | 冯子钰, 施润和. 中国近地面PM2.5浓度与排放的时空分布及其关联分析[J]. 地球信息科学学报, 2021, 23(7): 1221-1230. |
[13] | 姜伊兰, 陈保旺, 黄玉芳, 崔佳琪, 郭宇龙. 基于Google Earth Engine和NDVI时序差异指数的作物种植区提取[J]. 地球信息科学学报, 2021, 23(5): 938-947. |
[14] | 谢聪慧, 吴世新, 张晨, 孙文涛, 何海芳, 裴韬, 罗格平. 基于谱系聚类的全球各国新冠疫情时间序列特征分析[J]. 地球信息科学学报, 2021, 23(2): 236-245. |
[15] | 崔明洁, 姚霞, 方昊然, 张杨成思, 杨德刚, 裴韬. SARS与COVID-19时空传播差异性及影响因素分析[J]. 地球信息科学学报, 2021, 23(11): 1910-1923. |
|