地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (12): 1613-1622.doi: 10.3724/SP.J.1047.2017.01613
所属专题: 气候变化与地表过程
收稿日期:
2017-05-18
修回日期:
2017-07-04
出版日期:
2017-12-25
发布日期:
2017-12-25
通讯作者:
赵尚民
E-mail:suqiaomei@tyut.edu.cn;zhaoshangmin@tyut.edu.cn
作者简介:
作者简介:苏巧梅(1970-),女,博士,副教授,研究方向为遥感与GIS应用,GIS空间分析。E-mail:
基金资助:
SU Qiaomei1(), ZHAO Shangmin1,*(
), GUO Jianli1,2
Received:
2017-05-18
Revised:
2017-07-04
Online:
2017-12-25
Published:
2017-12-25
Contact:
ZHAO Shangmin
E-mail:suqiaomei@tyut.edu.cn;zhaoshangmin@tyut.edu.cn
摘要:
本文以山西省霍西煤矿区为研究区,利用遥感和GIS方法对滑坡灾害的敏感性进行了数值建模与定量评价。利用交叉检验方法构建了径向基核函数支持向量机滑坡敏感性评价模型,并基于拟合精度对模型进行了定量评价;对各评价因子在模型中的重要性进行对比分析;基于空间分辨率为30m的评价因子,通过径向基核函数支持向量机模型获得了霍西煤矿区滑坡敏感性指数值,并利用分位数法将霍西煤矿区的滑坡敏感性分为极高、高、中和低4个等级。结果表明:拟合精度建模阶段和验证阶段分别为87.22%和70.12%;与滑坡敏感性关系最密切的5个评价因子依次是岩性、距道路距离、坡向、高程和土地利用类型;极高和高敏感区域分布了93.49%的滑坡点,面积占总面积的50.99%,是比较合理的分级方案。本研究不仅可以为研究区人工边坡调查和煤矿资源合理开采提供借鉴,对相似矿区的相关工作也具有参考价值。
苏巧梅, 赵尚民, 郭建立. 霍西煤矿区地表滑坡灾害敏感性数值建模与等级划分[J]. 地球信息科学学报, 2017, 19(12): 1613-1622.DOI:10.3724/SP.J.1047.2017.01613
SU Qiaomei,ZHAO Shangmin,GUO Jianli. Numerical Modeling and Degree Division to Landslide Susceptibility in the Ground Surface of Huoxi Coal Mine Area[J]. Journal of Geo-information Science, 2017, 19(12): 1613-1622.DOI:10.3724/SP.J.1047.2017.01613
表1
霍西煤矿区地质灾害评价基础数据表"
基础因子 | 数据来源 | 数据分类 | 数据类型 |
---|---|---|---|
高程/m | ASTER-GDEM(30 m) | 348~2346 | 连续值 |
平面曲率 | 0-82.03 | ||
剖面曲率 | 0-46.85 | ||
坡度/° | 0~64.5 | ||
坡向 | Flat;N;NE;E;SE;S;SW;W;NW | 分类值 | |
地层岩性 | 地质调查部门 (1:50 000) | 块状岩体;泥岩,页岩;砂岩,砂质页岩;灰岩;白云岩;页岩;煤,石灰岩; 粉砂质泥岩,砂岩;粘土,亚粘土;亚砂土,亚粘土;亚砂土;砂质粘土,砾石 | 分类值 |
距断层距离/m | <200,200~400,400~600,600~800,800~1000,>1000 | ||
距河流距离/m | 国土资源部门(1:50 000) | <100,100~200,200~300,300~400,400~500,>500 | 分类值 |
距道路距离/m | <100,100~200,200~300,300~400,400~500,>500 | ||
采矿扰动 | 开采区;非开采区 | ||
土地利用类型 | TM(30 m) | 耕地;林地;草地;住宅用地;工矿用地;水域 | 分类值 |
NDVI | -0.414-0.631 | 连续值 |
[1] | 何芳,徐友宁,乔冈,等.中国矿山地质灾害分布特征[J].地质通报,2012,31(2):476-485. |
[ He F, Xu Y N, Qiao G, et al.Distribution characteristics of mine geological hazards in China[J]. Geological Bulletin of China, 2012,31(2):476-485. ] | |
[2] | 吴树仁,石菊松,王涛,等.滑坡风险评估理论与技术[M].北京:科学出版社,2012. |
[ Wu S R, Shi J S, Wang T, et al.Theory and technology of landslide risk assessment[M]. Beijing: Science Publishing, 2012. ] | |
[3] |
Westen C J, Rengers N, Soeters R.Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment[J]. Natural Hazards, 2003,30(3):399-419.
doi: 10.1023/B:NHAZ.0000007097.42735.9e |
[4] |
Xu W, Yu W, Jing S, et al.Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China)[J]. Natural Hazards, 2013,65(3):1379-1392.
doi: 10.1007/s11069-012-0414-z |
[5] | 牛瑞卿,韩舸.利用数据挖掘的滑坡监测数据处理流程[J].武汉大学学报·信息科学版,2012,37(7):869-872. |
[ Niu R Q, Han G.Technological flow for processing Landslide-monitoring data based on data mining[J]. Geomatics and Information Science of Wuhan University, 2012,37(7):869-872. ] | |
[6] |
Yao X, Tham L G, Dai F C.Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 2008,101(4):572-582.
doi: 10.1016/j.geomorph.2008.02.011 |
[7] |
胡德勇,李京,陈云浩,等. GIS支持下滑坡灾害空间预测方法研究[J].遥感学报,2007,11(6):852-859.
doi: 10.11834/jrs.200706115 |
[ Hu D Y, Li J, Chen Y H, et al.GIS-based landslide spatial prediction methods: A case study in Cameron Highland, Malaysia[J]. Journal of Remote Sensing, 2007,11(6):852-859. ]
doi: 10.11834/jrs.200706115 |
|
[8] |
戴福初,姚鑫,谭国焕.滑坡灾害空间预测支持向量机模型及其应用[J].地学前缘,2007,14(6):153-159.
doi: 10.3321/j.issn:1005-2321.2007.06.019 |
[ Dai F C, Yao X, Tan G H.Landslide susceptibility mapping using support vector machine[J]. Earth Science Frontiers, 2007,14(6):153-159. ]
doi: 10.3321/j.issn:1005-2321.2007.06.019 |
|
[9] | 许冲,徐锡伟.基于不同核函数的2010年玉树地震滑坡空间预测模型研究[J].地球物理学报,2012,55(9):2294-3005. |
[ Xu C, Xu X W.The 2010 Yushu earthquake triggered landslide spatial prediction models based on several kernel functions types[J]. Chinese Journal of Geophysics, 2012,55(9):2294-3005. ] | |
[10] |
谭龙,陈冠,王思源,等.逻辑回归与支持向量机模型在滑坡敏感性评价中的应用[J].工程地质学报,2014,22(1):56-63.
doi: 10.3969/j.issn.1004-9665.2014.01.008 |
[ Tan L, Chen G, Wang S Y, et al.Landslide susceptibility mapping based on logistic regression and support vector machines[J]. Journal of Engineering Geology, 2014,22(1):56-63. ]
doi: 10.3969/j.issn.1004-9665.2014.01.008 |
|
[11] |
Kavzoglu T, Sahin E K, Colkesen I.Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression[J]. Landslides, 2014,11(3):425-439.
doi: 10.1007/s10346-013-0391-7 |
[12] |
Colkesen I, Sahin E K, Kavzoglu T.Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression[J]. Journal of African Earth Sciences, 2016,118:53-64.
doi: 10.1016/j.jafrearsci.2016.02.019 |
[13] |
Pradhan B.A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences, 2013,51(2):350-365.
doi: 10.1016/j.cageo.2012.08.023 |
[14] |
Yao X, Tham L G, Dai F C.Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 2008,101(4):572-582.
doi: 10.1016/j.geomorph.2008.02.011 |
[15] |
肖和平. 我国煤矿的主要地质灾害及防治对策[J].中国地质灾害与防治学报,2001,12(1):51-54.
doi: 10.3969/j.issn.1003-8035.2001.01.013 |
[ Xiao H P.Important geological hazards of coal-mine and its prevention measures in China[J]. The Chinese Journal of Geological Hazard and Control, 2001,12(1):51-54. ]
doi: 10.3969/j.issn.1003-8035.2001.01.013 |
|
[16] | 翟文杰,钟以章,姜德录,等.抚顺西露天煤矿地质灾害预测[J].自然灾害学报,2006,15(4):132-137. |
[ Zhai W J, Zhong Y Z, Jiang D L, et al.Prediction of geological hazard in west open pit of Fushun coal mine[J]. Journal of Natural Disasters, 2006,15(4):132-137. ] | |
[17] | 王现国,翟小洁,张平辉,等.小秦岭矿区地质灾害发育特征与易发性分区[J].地下水,2010,32(4):162-164. |
[ Wang X G. Zhai X J, Zhang P H, et al.Analysis of geological hazards development characteristics and effect factors in Xiao Qinling Mountains mining area[J]. Ground Water, 2010,32(4):162-164. ] | |
[18] |
张国丽,杨宝林,张志,等.基于GIS与BP神经网络的采空塌陷易发性预测[J].热带地理,2015,35(5):770-776. [ Zhang G L, Yang B L, Zhang Z, et al. Susceptibility Prediction of under ground mining collapse based on GIS and BP Neural Network[J]. Tropical Geography, 2015,35(5):770-776. ]
doi: 10.13284/j.cnki.rddl.002756 |
[19] |
Lee S, Park I, Choi J K.Spatial prediction of ground subsidence susceptibility using an Artificial Neural Network[J]. Environmental Management, 2012,49(2):347-358.
doi: 10.1007/s00267-011-9766-5 pmid: 22005969 |
[20] |
Suh J, Choi Y, Park H D.GIS-based evaluation of mining-induced subsidence susceptibility considering 3D multiple mine drifts and estimated mined panels[J]. Environmental Earth Sciences, 2016,75(10):1-19.
doi: 10.1007/s12665-016-5695-1 |
[21] |
Oh H J, Ahn S C, Choi J K, et al.Sensitivity analysis for the GIS-based mapping of the ground subsidence hazard near abandoned underground coal mines[J]. Environmental Earth Sciences, 2011,64(2):347-358.
doi: 10.1007/s12665-010-0855-1 |
[22] | 刘瑾. 山西省地质灾害防治研究[M].山西:山西科学技术出版社,2015:93-95. |
[ Liu J.Study on geological disasters countermeasures in Shanxi Province[M]. Shanxi: Shanxi Science and Technology Press, 2015:93-95. ] | |
[23] |
Lee S, Ryu J H, Kim L S.Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression and artificial neural network models: A case study of Youngin, Korea[J]. Landslides, 2007,4(4):327-338.
doi: 10.1007/s10346-007-0088-x |
[24] | 王治华. 滑坡遥感[M].北京:科学出版社,2012. |
[ Wang Z H.Landslide Remote Sensing[M]. Beijing: Science Press, 2012. ] | |
[25] |
王治华. 滑坡图像自动识别浅议[J].地球信息科学学报,2013,15(5):726-733.
doi: 10.3724/SP.J.1047.2013.00726 |
[ Wang Z H.A preliminary discussion on landslide pattern recognition[J]. Journal of Geo-Information Science, 2013,15(5):726-733. ]
doi: 10.3724/SP.J.1047.2013.00726 |
|
[26] | 马秋红. 秦巴山区地层岩性与地质构造对地质灾害发育的控制作用分析[D].西安:长安大学,2011. |
[ Ma Q H.Analysis of the control effect of formation lithology and geological structure on the development of geological disasters in Qinba Mountain[D]. Xi'an: Chang'an University, 2011. ] | |
[27] | 杨城,林广发,张明锋,等.基于DEM的福建省土质滑坡敏感性评价[J].地球信息科学学报,2016,18(12):1624-1633. |
[ Yang C, Lin G F, Zhang M F, et al.Soil landslide sensitivity assessment based on DEM[J]. Journal of Geo-information Science, 2016,18(12):1624-1633. ] | |
[28] |
Akgun A, Dag S, Bulut F.Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood frequency ratio and weighted linear combination models[J]. Environmental Geology, 2008,54(6):1127-1143.
doi: 10.1007/s00254-007-0882-8 |
[29] |
Gokceoglu C, Sonmez H, Nefeslioglu HA, et al.The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide susceptibility map of its near vicinity[J]. An International Journal of Engineering Geology, 2005,81(1):65-83.
doi: 10.1016/j.enggeo.2005.07.011 |
[1] | 曹中浩, 张健钦, 杨木, 贾礼朋, 邓少存. 基于GIS新冠智能体仿真模型及应用——以广州市为例[J]. 地球信息科学学报, 2021, 23(2): 297-306. |
[2] | 李锐, 石佳豪, 董广胜, 刘朝辉. 多粒度时空对象组成结构表达研究[J]. 地球信息科学学报, 2021, 23(1): 113-123. |
[3] | 宋关福, 陈勇, 罗强, 武梦瑶. GIS基础软件技术体系发展及展望[J]. 地球信息科学学报, 2021, 23(1): 2-15. |
[4] | 毛亚萍, 房世峰. 基于机器学习的参考作物蒸散量估算研究[J]. 地球信息科学学报, 2020, 22(8): 1692-1701. |
[5] | 姚可桢, 岳书平. 网络大数据下的中国现代食甜习惯空间分布特征及其影响因素研究[J]. 地球信息科学学报, 2020, 22(6): 1202-1215. |
[6] | 崔成, 任红艳, 赵璐, 庄大方. 基于街景影像多特征融合的广州市越秀区街道空间品质评估[J]. 地球信息科学学报, 2020, 22(6): 1330-1338. |
[7] | 朱亚茹, 高峻, 邴振华, 张中浩, 付晶. 基于参与式制图方法的景观服务评估与空间结构研究[J]. 地球信息科学学报, 2020, 22(5): 1106-1119. |
[8] | 赵耀龙, 巢子豪. 历史GIS的研究现状和发展趋势[J]. 地球信息科学学报, 2020, 22(5): 929-944. |
[9] | 王英杰, 张桐艳, 李鹏, 虞虎. GIS在中国旅游资源研究与应用中的现状及趋势[J]. 地球信息科学学报, 2020, 22(4): 751-759. |
[10] | 杜培军, 王欣, 蒙亚平, 林聪, 张鹏, 卢刚. 面向地理国情监测的变化检测与地表覆盖信息更新方法[J]. 地球信息科学学报, 2020, 22(4): 857-866. |
[11] | 杨艳昭, 郎婷婷, 张超, 贾琨. 基于GIS的“一带一路”地区气温插值方法比较研究[J]. 地球信息科学学报, 2020, 22(4): 867-876. |
[12] | 单渌铱, 王海军, 张彬, 潘鹏. 顾及土地生态安全的环鄱阳湖城市群土地利用情景模拟[J]. 地球信息科学学报, 2020, 22(3): 543-556. |
[13] | 李玉, 张黎明, 张兴国, 王昊, 张鑫港. 基于气象监测网络的森林火险快速预警模型[J]. 地球信息科学学报, 2020, 22(12): 2317-2325. |
[14] | 宋关福, 卢浩, 王晨亮, 胡辰璞, 黄科佳. 人工智能GIS软件技术体系初探[J]. 地球信息科学学报, 2020, 22(1): 76-87. |
[15] | 刘菊, 陈璨, 许珺. 基于众包的古琴名人时空信息采集与移动轨迹时空分析[J]. 地球信息科学学报, 2019, 21(6): 844-853. |
|