地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (12): 1623-1633.doi: 10.3724/SP.J.1047.2017.01623
收稿日期:
2017-07-21
修回日期:
2017-08-31
出版日期:
2017-12-25
发布日期:
2017-12-25
作者简介:
作者简介:林齐根(1991-),男,广东汕头人,博士生,研究方向为灾害风险评估模型。E-mail:
基金资助:
LIN Qigen, LIU Yanyi, LIU Lianyou, WANG Ying*()
Received:
2017-07-21
Revised:
2017-08-31
Online:
2017-12-25
Published:
2017-12-25
Contact:
WANG Ying
摘要:
Newmark位移模型是研究地震滑坡易发性的经典模型,机器学习方法支持向量机模型也越来越多的应用到滑坡易发性评估研究。本文将Newmark位移模型与支持向量机模型相结合,建立基于物理机理的地震滑坡易发性评估模型并应用于2008年汶川地震重灾区汶川县。从震后遥感影像目视解译出汶川县1900处地震诱发滑坡,并将其随机划分为70%的训练数据集和30%的验证数据集。选择地形起伏度、坡度、地形曲率、与构造断裂带距离、与水系距离、与道路距离6个因子与Newmark位移值共同作为地震滑坡易发性影响因素。利用ROC曲线和模型不确定性等指标对模型结果进行评估,并与二元统计模型频率比和多元统计模型Logistic回归的结果进行对比。结果表明:与频率比和Logistic回归模型相比,支持向量机模型的正确率最高,训练集和验证集ROC曲线下的面积分别为0.876和0.851。将模型应用于绘制汶川县地震滑坡易发性图,结果显示滑坡易发性图与实际的滑坡点位分布一致性较高,有80.4%的滑坡位于极高和高易发区。这说明支持向量机与Newmark位移方法结合建立的地震滑坡易发性评估模型有较高的预测价值,可以为滑坡风险评估和管理提供依据。
林齐根, 刘燕仪, 刘连友, 王瑛. 支持向量机与Newmark模型结合的地震滑坡易发性评估研究[J]. 地球信息科学学报, 2017, 19(12): 1623-1633.DOI:10.3724/SP.J.1047.2017.01623
LIN Qigen,LIU Yanyi,LIU Lianyou,WANG Ying. Earthquake-triggered Landslide Susceptibility Assessment Based on Support Vector Machine Combined with Newmark Displacement Model[J]. Journal of Geo-information Science, 2017, 19(12): 1623-1633.DOI:10.3724/SP.J.1047.2017.01623
表1
逐步Logistic回归模型和VIF多重共线性检验结果
影响因素 | Coefficients | Std. Error | Sig. | VIF |
---|---|---|---|---|
Newmark位移 | 0.091 | 0.040 | 0.023 | 1.246 |
地形起伏度 | 1.728 | 0.125 | 0.000 | 1.040 |
距断裂带距离 | -0.504 | 0.045 | 0.000 | 1.308 |
距水系距离 | -0.469 | 0.043 | 0.000 | 1.311 |
距道路距离 | -0.293 | 0.043 | 0.000 | 1.365 |
坡度 | 0.011 | 0.237 | 0.962 | 3.820 |
地形曲率 | -0.005 | 0.010 | 0.581 | 1.002 |
常数 | 2.420 | 0.639 | 0.000 |
[1] | Keefer D K.Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 1984,95(4):406-421. |
[2] |
Jibson R W.Regression models for estimating coseismic landslide displacement[J]. Engineering Geology, 2007,91(2):209-218.
doi: 10.1016/j.enggeo.2007.01.013 |
[3] |
Xu C, Xu X, Yao X, et al.Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 2014,11(3):441-461.
doi: 10.1007/s10346-013-0404-6 |
[4] | 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报,2009,28(6):1239-1249. |
[ Huang R Q.Mechanism and geo-mechanical modes of landslide hazards triggered by Wenchuan 8.0 Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(6):1239-1249. ] | |
[5] |
Yin Y, Wang F, Sun P.Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2009,6(2):139-152.
doi: 10.1007/s10346-009-0148-5 |
[6] |
Dai F C, Lee C F, Ngai Y Y.Landslide risk assessment and management: an overview[J]. Engineering Geology, 2002,64(1):65-87.
doi: 10.1016/S0013-7952(01)00093-X |
[7] |
Corominas J, Van Westen C, Frattini P, et al.Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of Engineering Geology and the Environment, 2014,73(2):209-263.
doi: 10.1007/s10064-013-0538-8 |
[8] |
Ayalew L, Yamagishi H, Ugawa N.Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan[J]. Landslides, 2004,1(1):73-81.
doi: 10.1007/s10346-003-0006-9 |
[9] |
Kayastha P, Dhital M R, De Smedt F.Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal[J]. Computers & Geosciences, 2013,52:398-408.
doi: 10.1016/j.cageo.2012.11.003 |
[10] |
Van Den Eeckhaut M, Marre A, Poesen J. Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France)[J]. Geomorphology, 2010,115(1):141-155.
doi: 10.1016/j.geomorph.2009.09.042 |
[11] |
Süzen M L, Kaya B Ş.Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping[J]. International Journal of Digital Earth, 2012,5(4):338-355.
doi: 10.1080/17538947.2011.586443 |
[12] |
Carrara A, Cardinali M, Detti R, et al.GIS techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landforms, 1991,16(5):427-445.
doi: 10.1002/esp.3290160505 |
[13] |
Carrara A, Guzzetti F, Cardinali M, et al.Use of GIS technology in the prediction and monitoring of landslide hazard[J]. Natural Hazards, 1999,20(2-3):117-135.
doi: 10.1023/A:1008097111310 |
[14] |
Guzzetti F, Carrara A, Cardinali M, et al.Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy[J]. Geomorphology, 1999,31(1):181-216.
doi: 10.1016/S0169-555X(99)00078-1 |
[15] |
Wang Y, Song C, Lin Q, et al.Occurrence probability assessment of earthquake-triggered landslides with newmark displacement values and logistic regression: The Wenchuan earthquake, China[J]. Geomorphology, 2016,258:108-119.
doi: 10.1016/j.geomorph.2016.01.004 |
[16] | 杨城,林广发,张明锋,等.基于DEM的福建省土质滑坡敏感性评价[J].地球信息科学学报,2016,18(12):1624-1633 |
[ Yang C, Lin G F, Zhang M F, et al.Soil landslide susceptibility assessment based on DEM[J] Journal of Geo-information Science, 2016,18(12):1624-1633. ] | |
[17] |
王瑛,林齐根,史培军.中国地质灾害伤亡事件的空间格局及影响因素[J].地理学报,2017,72(5):906-917.
doi: 10.11821/dlxb201705011 |
[ Wang Y, Lin Q G, Shi P J.Spatial pattern and influencing factors of casualty events caused by landslides[J]. Acta Geographica Sinica, 2017,72(5):906-917. ]
doi: 10.11821/dlxb201705011 |
|
[18] |
Yao X, Tham L G, Dai F C.Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 2008,101(4):572-582.
doi: 10.1016/j.geomorph.2008.02.011 |
[19] |
Xu C, Dai F, Xu X, et al. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China[J]. Geomorphology , 2012,145-146:70-80.
doi: 10.1016/j.geomorph.2011.12.040 |
[20] |
Peng L, Niu R, Huang B, et al.Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the three gorges area, China[J]. Geomorphology, 2014,204:287-301.
doi: 10.1016/j.geomorph.2013.08.013 |
[21] |
Alimohammadlou Y, Najafi A, Gokceoglu C.Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods: A case study in Saeen Slope, Azerbaijan province, Iran[J]. Catena, 2014,120:149-162.
doi: 10.1016/j.catena.2014.04.009 |
[22] |
Melchiorre C, Matteucci M, Azzoni A, et al.Artificial neural networks and cluster analysis in landslide susceptibility zonation[J]. Geomorphology, 2008,94(3-4):379-400.
doi: 10.1109/IJCNN.2006.247036 |
[23] |
Trigila A, Iadanza C, Esposito C, et al.Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)[J]. Geomorphology, 2015,249:119-136.
doi: 10.1016/j.geomorph.2015.06.001 |
[24] |
Hong H, Pourghasemi H R, Pourtaghi Z S.Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models[J]. Geomorphology, 2016,259:105-118.
doi: 10.1016/j.geomorph.2016.02.012 |
[25] |
Mountrakis G, Im J, Ogole C.Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(3):247-259.
doi: 10.1016/j.isprsjprs.2010.11.001 |
[26] |
Ohlmacher G C, Davis J C.Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA[J]. Engineering Geology, 2003,69(3):331-343.
doi: 10.1016/S0013-7952(03)00069-3 |
[27] | Newmark N M.Effects of earthquakes on dams and embankments[J]. Geotechnique, 1965,15(2):139-160. |
[28] |
Jibson R W, Harp E L, Michael J A.A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology, 2000,58(3):271-289.
doi: 10.1016/S0013-7952(00)00039-9 |
[29] |
Hsieh S Y, Lee C T.Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration[J]. Engineering Geology, 2011,122(1):34-42.
doi: 10.1016/j.enggeo.2010.12.006 |
[30] |
Capolongo D, Refice A, Mankelow J.Evaluating earthquake-triggered landslide hazard at the basin scale through GIS in the Upper Sele river valley[J]. Surveys in geophysics, 2002,23(6):595-625.
doi: 10.1023/A:1021235029496 |
[31] |
Wang K L, Lin M L.Development of shallow seismic landslide potential map based on Newmark′s displacement: the case study of Chi-Chi earthquake, Taiwan[J]. Environmental Earth Sciences, 2010,60(4):775-785.
doi: 10.1007/s12665-009-0215-1 |
[32] |
Densmore A L, Ellis M A, Li Y, et al.Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 2007,26(TC4005):1-17.
doi: 10.1029/2006TC001987 |
[33] | 秦绪文,杨金中,张志,等.汶川地震灾区航天遥感应急调查[M].北京:科学出版社,2009. |
[ Qin X W, Yang J Z, Zhang Z, et al.Remote sensing emergency survey in Wenchuan earquake area[M]. Beijing: Science Press, 2009. ] | |
[34] | Vapnik V.The nature of statistical learning theory[M]. Germany: Springer Science & Business Media, 2013. |
[35] |
Chung C J F, Fabbri A G. Validation of spatial prediction models for landslide hazard mapping[J]. Natural Hazards, 2003,30(3):451-472.
doi: 10.1023/B:NHAZ.0000007172.62651.2b |
[36] |
Ayalew L, Yamagishi H.The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J]. Geomorphology, 2005,65(1):15-31.
doi: 10.1016/j.geomorph.2004.06.010 |
[37] |
Schicker R, Moon V.Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale[J]. Geomorphology, 2012,161:40-57.
doi: 10.1016/j.geomorph.2012.03.036 |
[38] | Wilson R C.Relation of Arias intensity to magnitude and distance in California[R]. US Geological Survey, 1993. |
[39] |
Qi S, Xu Q, Lan H, et al.Spatial distribution analysis of landslides triggered by 2008 5.12 Wenchuan Earthquake, China[J]. Engineering Geology, 2010,116(1):95-108.
doi: 10.1016/j.enggeo.2010.07.011 |
[40] |
Lee S, Pradhan B.Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models[J]. Landslides, 2007,4(1):33-41.
doi: 10.1007/s10346-006-0047-y |
[41] |
Lin L, Lin Q, Wang Y.Landslide susceptibility mapping on a global scale using the method of logistic regression[J]. Natural Hazards and Earth System Sciences, 2017,17:1411-1424.
doi: 10.5194/nhess-2016-347 |
[42] |
Swets J A.Measuring the accuracy of diagnostic systems[J]. Science, 1988,240(4857):1285-1293.
pmid: 3287615 |
[43] |
Rossi M, Guzzetti F, Reichenbach P, et al.Optimal landslide susceptibility zonation based on multiple forecasts[J]. Geomorphology, 2010,114(3):129-142.
doi: 10.1016/j.geomorph.2009.06.020 |
[1] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[2] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[3] | 柯日宏, 吴升, 柯玮文. 一种识别共享单车潮汐点的时空模型和基于KNN-LightGBM的租还需求预测方法[J]. 地球信息科学学报, 2023, 25(4): 741-753. |
[4] | 李心雨, 闫浩文, 王卓, 王炳瑄. 街景图像与机器学习相结合的道路环境安全感知评价与影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 852-865. |
[5] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[6] | 刘佳, 伍宇明, 高星, 司文涛. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7): 1275-1285. |
[7] | 黄钦, 杨波, 徐新创, 郝汉舟, 梁莉莉, 王敏. 基于多源空间数据和随机森林模型的长沙市茶颜悦色门店选址与预测研究[J]. 地球信息科学学报, 2022, 24(4): 723-737. |
[8] | 周侯伯, 肖桂荣, 林炫歆, 尹玉环. 基于特征筛选与差分进化算法优化的滑坡危险性评估方法[J]. 地球信息科学学报, 2022, 24(12): 2373-2388. |
[9] | 刘智谦, 吕建军, 姚尧, 张嘉琪, 寇世浩, 关庆锋. 基于街景图像的可解释性城市感知模型研究方法[J]. 地球信息科学学报, 2022, 24(10): 2045-2057. |
[10] | 熊皓丽, 周小成, 汪小钦, 崔雅君. 基于GEE云平台的福建省10 m分辨率茶园专题空间分布制图[J]. 地球信息科学学报, 2021, 23(7): 1325-1337. |
[11] | 邢晓语, 杨秀春, 徐斌, 金云翔, 郭剑, 陈昂, 杨东, 王平, 朱立博. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7): 1312-1324. |
[12] | 张春森, 贾欣, 吴蓉蓉, 崔卫红, 史书, 郭丙轩. 面向对象高分遥感影像典型自然地物半自动提取[J]. 地球信息科学学报, 2021, 23(6): 1050-1062. |
[13] | 李宏达, 高小红, 汤敏. 基于决策融合的SPOT-6影像土地覆被分类研究[J]. 地球信息科学学报, 2021, 23(5): 928-937. |
[14] | 赵泉华, 冯林达, 李玉. 基于最优极化特征组合的SAR影像湿地分类[J]. 地球信息科学学报, 2021, 23(4): 723-736. |
[15] | 邓雅文, 凌子燕, 孙娜, 吕金霞. 基于广义回归神经网络的京津冀地区土壤湿度遥感逐日估算研究[J]. 地球信息科学学报, 2021, 23(4): 749-761. |
|