地球信息科学学报 ›› 2014, Vol. 16 ›› Issue (5): 665-672.doi: 10.3724/SP.J.1047.2014.00665
所属专题: 地理大数据
• • 下一篇
收稿日期:
2014-07-08
修回日期:
2014-08-18
出版日期:
2014-09-10
发布日期:
2014-09-04
作者简介:
作者简介:陆 锋(1970-),博士,研究员,博士生导师。研究方向为地理信息系统理论与方法、导航与位置服务、空间数据库技术等。E-mail:
基金资助:
LU Feng*(), LIU Kang, CHEN Jie
Received:
2014-07-08
Revised:
2014-08-18
Online:
2014-09-10
Published:
2014-09-04
Contact:
LU Feng
E-mail:luf@lreis.ac.cn
About author:
*The author: CHEN Nan, E-mail:
摘要:
人类个体/群体移动特征是多学科共同关注的研究主题。移动定位、无线通讯和移动互联网技术的快速发展使得获取大规模、长时间序列、精细时空粒度的个体移动轨迹和相互作用定量化成为可能。同时,地理信息科学、统计物理学、复杂网络科学和计算机科学等多学科交叉也为人类移动性研究的定量化提供了有力支撑。本文首先系统总结了大数据时代开展人类移动性研究的多源异构数据基础和多学科研究方法,然后将人类移动性研究归纳为面向人和面向地理空间两大方向。面向人的研究侧重探索人类移动特性的统计规律,并建立模型解释相应的动力学机制,或分析人类活动模式,并预测出行或活动;面向地理空间的研究侧重从地理视角分析人类群体在地理空间中的移动,探索宏观活动和地理空间的交互特征。围绕这两大方向,本文评述了人类移动性的研究进展和存在问题,认为人类移动性研究在数据稀疏性、数据偏斜影响与处理、多源异构数据挖掘、机器学习方法等方面依然面临挑战,对多学科研究方法的交叉与融合提出了更高要求。
陆锋, 刘康, 陈洁. 大数据时代的人类移动性研究[J]. 地球信息科学学报, 2014, 16(5): 665-672.DOI:10.3724/SP.J.1047.2014.00665
LU Feng,LIU Kang,CHEN Jie. Research on Human Mobility in Big Data Era[J]. Journal of Geo-information Science, 2014, 16(5): 665-672.DOI:10.3724/SP.J.1047.2014.00665
[1] | 徐赞新,王钺,司洪波,等.基于随机矩阵理论的城市人群移动行为分析[J].物理学报,2011,60(4):46-52. |
[2] | 刘瑜,肖昱,高松,等.基于位置感知设备的人类移动研究综述[J].地理与地理信息科学,2011,27(4):8-13. |
[3] | 丁益民,杨昌平.考虑人类流动行为的动态复杂网络研究[J].物理学报,2012,61(23):551-556. |
[4] | Rhee I, Shin M, Hong S, et al.On the levy-walk nature of human mobility[J]. IEEE/ACM Transactions on Networking, 2011,19(3):630-643. |
[5] | Zheng Y, Xie X, Ma W Y.GeoLife: A collaborative social networking service among user, location and trajectory[J]. IEEE Data(base) Engineering Bulletin, 2010,33(2):32-39. |
[6] | 郑宇,谢幸.基于用户轨迹挖掘的智能位置服务[J].中国计算机学会通讯,2010,6(6):23-30. |
[7] | 申悦,柴彦威.基于GPS数据的北京市郊区巨型社区居民日常活动空间[J].地理学报,2013,68(4):506-516. |
[8] | Liu Y, Kang C, Gao S, et al.Understanding intra-urban trip patterns from taxi trajectory data[J]. Journal of Geographical Systems, 2012,14(4):463-483. |
[9] | Veloso M, Phithakkitnukoon S, Bento C.Sensing urban mobility with taxi flow[C].//Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks. ACM, 2011:41-44. |
[10] | Yuan J, Zheng Y, Zhang C, et al.T-drive: driving directions based on taxi trajectories[C].//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2010:99-108. |
[11] | 郑宇. 城市计算与大数据[J].中国计算机学会通讯,2013,9(8):6-16 |
[12] | Gonzalez M C, Hidalgo C A, Barabasi A L.Understanding individual human mobility patterns[J]. Nature, 2008,453(7196):779-782. |
[13] | Csáji B C, Browet A, Traag V A, et al.Exploring the mobility of mobile phone users[J]. Physica A: Statistical Mechanics and its Applications, 2013,392(6):1459-1473. |
[14] | Noulas A, Scellato S, Mascolo C, et al.An empirical study of geographic user activity patterns in Foursquare[J]. ICWSM, 2011,11:70-573. |
[15] | Liu Y, Sui Z, Kang C, et al.Uncovering patterns of inter-urban trip and spatial interaction from social media check-In data[J]. PloS ONE, 2014,9(1):e86026. |
[16] | 龙瀛,张宇,崔承印.利用公交刷卡数据分析北京职住关系和通勤出行[J].地理学报,2012,67(10):1339-1352. |
[17] | Roth C, Kang S M, Batty M, et al.Structure of urban movements: polycentric activity and entangled hierarchical flows[J]. PloS one, 2011,6(1):e15923. |
[18] | Froehlich J, Neumann J, Oliver N.Sensing and predicting the pulse of the city through shared bicycling[M]. International Joint Conferences on Artificial Intelligence. 2009:1420-1426. |
[19] | 汪秉宏,周涛,周昌松.人类行为,复杂网络及信息挖掘的统计物理研究[J].上海理工大学学报,2012,34(2):103-117. |
周涛,韩筱璞,闫小勇,等.人类行为时空特性的统计力学[J].电子科技大学学报,2013,42(4):481-540. | |
[20] | Song C, Koren T, Wang P, et al.Modelling the scaling properties of human mobility[J]. Nature Physics, 2010,6(10):818-823. |
[21] | Han X P, Hao Q, Wang B H, et al.Origin of the scaling law in human mobility: Hierarchy of traffic systems[J]. Physical Review E, 2011,83(3):036117. |
[22] | Hu Y, Zhang J, Huan D, et al.Toward a general understanding of the scaling laws in human and animal mobility[J]. Europhysics Letters, 2011,96(3):38006. |
[23] | Han X P, Wang B H.Impacts of distance and memory in the emergence of scaling mobility pattern of human[J]. Physics Procedia, 2010,3(5):1907-1911. |
[24] | Di Lorenzo G, Calabrese F.Identifying human spatio-temporal activity patterns from mobile-phone traces[M]. Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on. IEEE, 2011:1069-1074. |
[25] | Duan Y, Lu F.Structural robustness of city road networks based on community[J]. Computers, Environment and Urban Systems, 2013,41:75-87. |
[26] | Kumar R, Novak J, Tomkins A.Structure and evolution of online social networks[M]. In: Yu Philip S., Han Jiawei, Faloutsos Christos. Link mining: models, algorithms, and applications. New York: Springer, 2010:337-357. |
[27] | Gao S, Liu Y, Wang Y, et al.Discovering spatial interaction communities from mobile phone data[J]. Transactions in GIS, 2013,17(3):463-481. |
[28] | De Vries J J, Nijkamp P, Rietveld P. Alonso's theory of movements: Developments in spatial interaction modeling[J]. Journal of Geographical Systems, 2001,3(3):233-256. |
[29] | Noulas A, Scellato S, Lambiotte R, et al.A tale of many cities: universal patterns in human urban mobility[J]. PloS ONE, 2012,7(5):e37027. |
[30] | Viswanathan G M.Levy Flight search patterns of wandering albatrosses[J]. Nature, 1996,381:413-415. |
[31] | Brockmann D, Hufnagel L, Geisel T.The scaling laws of human travel[J]. Nature, 2006, 439(7075):462-465. |
[32] | Liang X, Zheng X, Lv W, et al.The scaling of human mobility by taxis is exponential[J]. Physica A: Statistical Mechanics and its Applications, 2012,391(5):2135-2144. |
[33] | Jiang B, Jia T. Exploring human mobility patterns based on location information of US flights[J]. arXiv preprint arXiv:1104.4578, 2011. |
[34] | Roth C, Kang S M, Batty M, et al.Structure of urban movements: polycentric activity and entangled hierarchical flows[J]. PloS one, 2011,6(1):e15923. |
[35] | 王明生,黄琳,闫小勇.探索城市公交客流移动模式[J].电子科技大学学报,2012,41(1):2-7. |
[36] | 闫小勇. 人类个体出行行为的统计实证[J].电子科技大学学报,2011,40(2):168-173. |
[37] | Phithakkitnukoon S, Horanont T, Di Lorenzo G, et al.Activity-aware map: Identifying human daily activity pattern using mobile phone data[M]. In: Albert Ali Salah, Theo Gevers, Nicu Sebe, et al. Human Behavior Understanding. Berlin Heidelberg: Springer, 2010:14-25. |
[38] | Farrahi K, Gatica-Perez D.Discovering human routines from cell phone data with topic models[C].//Wearable Computers, 2008. ISWC 2008. 12th IEEE International Symposium on. IEEE, 2008:29-32. |
[39] | Huang L, Li Q, Yue Y.Activity identification from GPS trajectories using spatial temporal POIs' attractiveness[C] .//Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks. ACM, 2010:27-30. |
[40] | Eagle N, Pentland A S.Eigenbehaviors: Identifying structure in routine[J]. Behavioral Ecology and Sociobiology, 2009,63(7):1057-1066. |
[41] | Song C, Qu Z, Blumm N, et al.Limits of predictability in human mobility[J]. Science, 2010,327(5968):1018-1021. |
[42] | Ashbrook D, Starner T.Using GPS to learn significant locations and predict movement across multiple users[J]. Personal and Ubiquitous Computing, 2003,7(5):275-286. |
[43] | Calabrese F, Di Lorenzo G, Ratti C.Human mobility prediction based on individual and collective geographical preferences[C].//Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. IEEE, 2010:312-317. |
[44] | Sadilek A, Kautz H, Bigham J P.Finding your friends and following them to where you are[C].//Proceedings of the fifth ACM international conference on Web search and data mining. ACM, 2012:723-732. |
[45] | Baraglia R, Muntean C I, Nardini F M, et al.LearNext: learning to predict tourists movements[C].//Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013:751-756. |
[46] | Zipf G K.The P1 P2/D hypothesis: On the intercity movement of persons[J]. American sociological review, 1946:677-686. |
[47] | Simini F, González M C, Maritan A, et al.A universal model for mobility and migration patterns[J]. Nature, 2012,484(7392):96-100. |
[48] | Lenormand M, Huet S, Gargiulo F, et al.A universal model of commuting networks[J]. PloS ONE, 2012,7(10): e45985. |
[49] | Kang C, Sobolevsky S, Liu Y, et al.Exploring human movements in Singapore: A comparative analysis based on mobile phone and taxicab usages[C].//Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing. ACM, 2013. |
[50] | Ratti C, Williams S, Frenchman D, et al.Mobile landscapes: using location data from cell phones for urban analysis[J]. Environment and Planning B Planning and Design, 2006,33(5):727-748. |
[51] | Andrienko G, Andrienko N, Bak P, et al.A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage[J]. Journal of Location Based Services, 2010,4(3-4):200-221. |
[52] | Pei T, Sobolevsky S, Ratti C, et al. A New insight into land use classification based on aggregated mobile phone data[J]. arXiv preprint arXiv:1310.6129, 2013. |
[53] | Toole J L, Ulm M, González M C, et al.Inferring land use from mobile phone activity[C]//Proceedings of the ACM SIGKDD International Workshop on Urban Computing. ACM, 2012:1-8. |
[54] | Pan G, Qi G, Wu Z, et al.Land-use classification using taxi GPS traces[J]. Intelligent Transportation Systems, IEEE Transactions on, 2013,14(1):113-123. |
[55] | 陆锋,张恒才.大数据与广义GIS[J].武汉大学学报(信息科学版),2014,39(6):645-654. |
[1] | 刘亚溪, 宋辞, 刘起勇, 张知新, 王席, 马佳, 陈晓, 裴韬. 重庆市新型冠状病毒肺炎流行时空特征及其与人群活动性的关系[J]. 地球信息科学学报, 2021, 23(2): 222-235. |
[2] | 谢聪慧, 吴世新, 张晨, 孙文涛, 何海芳, 裴韬, 罗格平. 基于谱系聚类的全球各国新冠疫情时间序列特征分析[J]. 地球信息科学学报, 2021, 23(2): 236-245. |
[3] | 王晓凡, 方志祥, 仲浩宇, 邹欣妍. 传染病防控下的市民慢性病药品现场购药需求的周期优化[J]. 地球信息科学学报, 2021, 23(2): 307-317. |
[4] | 顾海硕, 陈鹏, 李慧波. 犯罪时空预测方法研究综述与展望[J]. 地球信息科学学报, 2021, 23(1): 43-57. |
[5] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[6] | 宋关福, 陈勇, 罗强, 武梦瑶. GIS基础软件技术体系发展及展望[J]. 地球信息科学学报, 2021, 23(1): 2-15. |
[7] | 邬明权, 王标才, 牛铮, 黄文江. 工程项目地球大数据监测与分析理论框架及研究进展[J]. 地球信息科学学报, 2020, 22(7): 1408-1423. |
[8] | 黄洁, 王姣娥. 交通大数据在人文与经济地理学的应用及学科影响[J]. 地球信息科学学报, 2020, 22(6): 1180-1188. |
[9] | 姚可桢, 岳书平. 网络大数据下的中国现代食甜习惯空间分布特征及其影响因素研究[J]. 地球信息科学学报, 2020, 22(6): 1202-1215. |
[10] | 孙威, 林晓娜. 柳州市汽车制造业企业的空间格局与影响因素[J]. 地球信息科学学报, 2020, 22(6): 1216-1227. |
[11] | 李涛, 王姣娥, 黄洁. 基于腾讯迁徙数据的中国城市群国庆长假城际出行模式与网络特征[J]. 地球信息科学学报, 2020, 22(6): 1240-1253. |
[12] | 赵韶雅, 杨星斗, 戴特奇, 张超. 基于刷卡数据的公共汽车客流网络复杂性日内变化研究[J]. 地球信息科学学报, 2020, 22(6): 1254-1267. |
[13] | 杜德林, 黄洁, 王姣娥. 基于多源数据的中国智慧城市发展状态评价[J]. 地球信息科学学报, 2020, 22(6): 1294-1306. |
[14] | 陈芳淼, 黄慧萍, 贾坤. 时空大数据在城市群建设与管理中的应用研究进展[J]. 地球信息科学学报, 2020, 22(6): 1307-1319. |
[15] | 湛东升, 谢春鑫, 张文忠, 丁亮, 许婧雪, 甄茂成. 基于累计机会可达性的北京城市公共服务设施复合功能识别[J]. 地球信息科学学报, 2020, 22(6): 1320-1329. |
|