地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (7): 1009-1017.doi: 10.12082/dqxxkx.2019.180701
收稿日期:
2018-12-28
修回日期:
2019-03-25
出版日期:
2019-07-25
发布日期:
2019-07-25
通讯作者:
王艳东
E-mail:liush96@whu.edu.cn;ydwang@whu.edu.cn
作者简介:
作者简介:刘淑涵(1996-),女,湖北十堰人,硕士生,研究方向为地理时空数据分析与挖掘。E-mail: <email>liush96@whu.edu.cn</email>
基金资助:
Shuhan LIU1(), Yandong WANG1,2,3,*(
), Xiaokang FU1
Received:
2018-12-28
Revised:
2019-03-25
Online:
2019-07-25
Published:
2019-07-25
Contact:
Yandong WANG
E-mail:liush96@whu.edu.cn;ydwang@whu.edu.cn
Supported by:
摘要:
从社交媒体中挖掘灾害应急信息,能够有效帮助传统灾害管理获取实时、主题丰富的灾害信息,从而成为灾害应急管理的新手段。得益于深度学习在自动特征提取上的成就,本文研究了一种利用卷积神经网络对社交媒体中的灾害应急信息进行自动实时提取与分类的方法。首先,利用社交媒体数据和Word2vec模型,构建与灾害类事件相关的语料库并获得相应的词向量;其次,将词嵌入文本和相应的灾情类别作为卷积神经网络的输入,经过多分类学习得到分类模型,用以提取近实时灾害信息。以2012年“7.21北京特大暴雨”事件为案例,通过分类模型获得常见灾情类别的暴雨灾害社交媒体信息。该模型在测试集上的精度达到了90%以上,并且将模型运用于新爬取的2016年暴雨数据集上也得到了较好的表现,说明该模型在近实时自动提取灾害信息方面具有可行性。在对2012年分类结果进行时空分析结果表明,通过社交媒体获得的暴雨灾害主题信息符合灾害发展的规律,说明了利用深度学习提取社交媒体数据中的灾害应急信息的有效性和可行性,能够为实时灾害应急管理提供新的思路。
刘淑涵, 王艳东, 付小康. 利用卷积神经网络提取微博中的暴雨灾害信息[J]. 地球信息科学学报, 2019, 21(7): 1009-1017.
Shuhan LIU, Yandong WANG, Xiaokang FU. Extracting Rainstorm Disaster Information from Microblogs Using Convolutional Neural Network[J]. Journal of Geo-information Science, 2019, 21(7): 1009-1017.
表1
2012年和2016年北京暴雨相关灾害信息精度评估结果"
类别 | 2012年北京暴雨 | 2016年北京暴雨 | |||||||
---|---|---|---|---|---|---|---|---|---|
数量/条 | 精确度/% | 召回率/% | F1值/% | 数量/条 | 精确度/% | 召回率/% | F1值/% | ||
正能量祈祷 | 129 | 89.9225 | 89.2308 | 89.5753 | 26 | 71.2308 | 40.7347 | 51.8296 | |
交通信息 | 75 | 97.3333 | 83.9080 | 90.1235 | 24 | 91.6667 | 62.8571 | 74.5763 | |
伤亡受灾 | 24 | 99.9999 | 82.7586 | 90.5660 | 4 | 74.9999 | 42.8571 | 54.5454 | |
灾害原因讨论 | 45 | 95.5556 | 91.4893 | 93.4783 | 26 | 84.6154 | 73.3333 | 78.5714 | |
提醒朋友 | 54 | 88.8889 | 77.4193 | 82.7586 | 5 | 80.0000 | 57.1428 | 67.0000 | |
天气预警 | 3 | 99.9999 | 6.9767 | 13.0434 | 3 | 66.6666 | 6.2499 | 11.4286 | |
整体 | 330 | 93.0303 | 75.4299 | 83.3107 | 88 | 81.6818 | 39.6904 | 53.4222 |
[1] | 韩雪华,王卷乐,卜坤,等.基于Web文本的灾害事件信息获取进展[J].地球信息科学学报,2018,20(8):1037-1046. |
[ Han X H, Wang J L, Bu K, et al.Progress on disaster events information acquisition from web text[J]. Journal of Geo-information Science, 2018,20(8):1037-1046. ] | |
[2] | 范春波,张鹏,汪洋,等.大力推进灾情管理科技应用[J].中国减灾,2017(11):22-25. |
[ Fan C B, Zhang P, Wang Y, et al.Vigorously promote the technology application of disaster management[J]. Disaster Reduction in China, 2017(11):22-25. ] | |
[3] | 贾平,张云霞,刘克俭.提升综合应急装备水平增强应急决策信息保障能力—灾害现场信息获取技术研究与应用示范获得国家重点研发计划支持[J].中国减灾,2016(21):30-31. |
[ Jia P, Zhang Y X, Liu K J, et al.Improve the level of comprehensive emergency equipment, enhance the ability of emergency decision-making information support - research and application demonstration of disaster site information acquisition technology has won the support of national key research and development plans[J]. Disaster Reduction in China, 2016(21):30-31. ] | |
[4] | 苏亚丽,郭旭东,雷莉萍,等.基于多源卫星遥感的暴雨灾情时空动态信息的提取[J].地球信息科学学报,2018,20(7):1004-1013. |
[ Su Y L, Guo X D, Lei L P, et al.Spatio-temporal dynamic information extraction of heavy rain disaster impacts on the growth of crop using multi-satellites observing data[J]. Journal of Geo-information Science, 2018,20(7):1004-1013. ] | |
[5] | 陈梓,高涛,罗年学,等.反映自然灾害时空分布的社交媒体有效性探讨[J].测绘科学,2017,42(8):44-48. |
[ Chen Z, Gao T, Luo N X, et al.Empirical discussion on relation between realistic disasters and social media data[J]. Science of Surveying and Mapping, 2017,42(8):44-48. ] | |
[6] | Zhang N, Chen H, Chen J, et al. Social media meets big urban data: A case study of urban waterlogging analysis[J]. Computational intelligence and neuroscience, 2016,2016:No.3264587. |
[7] |
Wang Z, Ye X.Social media analytics for natural disaster management[J]. International Journal of Geographical Information Science, 2018,32(1):49-72.
doi: 10.1080/13658816.2017.1367003 |
[8] | 王森,肖渝,黄群英,等.基于社交大数据挖掘的城市灾害分析——纽约市桑迪飓风的案例[J].国际城市规划,2018,33(4):84-92. |
[ Wang S, Xiao Y, Huang Q Y, et al.Research on urban disaster analysis based on the big data mining of social media: Case study of hurricane sandy in New York[J]. Urban Planning International, 2018,33(4):84-92. ] | |
[9] |
Yates D, Paquette S.Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake[J]. International Journal of Information Management, 2011,31(1):6-13.
doi: 10.1016/j.ijinfomgt.2010.10.001 |
[10] |
Crooks A, Croitoru A, Stefanidis A, et al.# Earthquake: Twitter as a distributed sensor system[J]. Transactions in GIS, 2013,17(1):124-147.
doi: 10.1111/tgis.2013.17.issue-1 |
[11] | Sakaki T, Okazaki M, Matsuo Y.Earthquake shakes Twitter users: Real-time event detection by social sensors[C]. International Conference on World Wide Web. ACM, 2010:851-860. |
[12] | Wang Y D, Wang T, Ye X, et al.Using social media for emergency response and urban sustainability: A case study of the 2012 Beijing rainstorm[J]. Sustainability, 2016,8(1):25. |
[13] | Zhu R, Lin D, Jendryke M, et al.Geo-Tagged social media data-based analytical approach for perceiving impacts of social events[J]. ISPRS International Journal of Geo-Information, 2019,8(1):15. |
[14] | Mouzannar H, Rizk Y, Awad M.Damage identification in social media posts using multimodal deep learning[C]. Proceedings of the 15th ISCRAM Conference, 2018:529-543. |
[15] |
Zhang Y, Liu Z, Zhou W.Event recognition based on deep learning in Chinese texts[J]. PloS one, 2016,11(8):e0160147.
doi: 10.1371/journal.pone.0160147 |
[16] |
Li J, He Z, Plaza J, et al.Social Media: New perspectives to improve remote sensing for emergency response[J]. Proceedings of the IEEE, 2017,105(10):1900-1912.
doi: 10.1109/JPROC.2017.2684460 |
[17] | Erhan D, Bengio Y, Courville A, et al.Why does unsupervised pre-training help deep learning?[J]. Journal of Machine Learning Research, 2010,11(3):625-660. |
[18] | Kim Y.Convolutional neural networks for sentence classification[J]. Empirical Methods in Natural Language Processing, 2014:1746-1751. |
[19] | Mikolov T, Chen K, Corrado G S, et al. Efficient estimation of word representations in vector space[J]. ArXiv Preprint, arX-iv:1301.3781,2013. |
[20] | Lai S, Liu K, He S, et al.How to generate a good word embedding[J]. IEEE Intelligent Systems, 2016,31(6):5-14. |
[21] | Krizhevsky A, Sutskever I, Hinton G E.Imagenet classification with deep convolutional neural networks[C]. Advances in neural information processing systems, 2012:1097-1105. |
[22] | Zhang Y, Wallace B C.A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification[J]. International Joint Conference on Natural Language Processing, 2017:253-263. |
[23] |
Huang Q, Xiao Y.Geographic situational awareness: Mining tweets for disaster preparedness, emergency response, impact, and recovery[J]. ISPRS International Journal of Geo-Information, 2015,4(3):1549-1568.
doi: 10.3390/ijgi4031549 |
[24] | 孙继松,何娜,王国荣,等.“7.21”北京大暴雨系统的结构演变特征及成因初探[J].暴雨灾害,2012,31(3):218-225. |
[ Sun J S, He N, Wang G R, et al.Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012[J]. Torrential Rain and Disasters, 2012,31(3):218-225. ] |
[1] | 蔡博文,王树根,王磊,邵振峰. 基于深度学习模型的城市高分辨率遥感影像 不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1420-1429. |
[2] | 姚尧, 任书良, 王君毅, 关庆锋. 卷积神经网络和随机森林的城市房价微观尺度制图方法[J]. 地球信息科学学报, 2019, 21(2): 168-177. |
[3] | 刘懿兰, 黄晓霞, 李红旮, 柳泽, 陈崇, 王新歌. 基于卷积神经网络与条件随机场方法提取乡镇非正规固体废弃物[J]. 地球信息科学学报, 2019, 21(2): 259-268. |
[4] | 杨腾飞, 解吉波, 李振宇, 李国庆. 微博中蕴含台风灾害损失信息识别和分类方法[J]. 地球信息科学学报, 2018, 20(7): 906-917. |
[5] | 刘文涛, 李世华, 覃驭楚. 基于全卷积神经网络的建筑物屋顶自动提取[J]. 地球信息科学学报, 2018, 20(11): 1562-1570. |
[6] | 王万国, 田兵, 刘越, 刘俍, 李建祥. 基于RCNN的无人机巡检图像电力小部件识别研究[J]. 地球信息科学学报, 2017, 19(2): 256-263. |
|