地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (3): 638-648.doi: 10.12082/dqxxkx.2020.190047
收稿日期:
2019-01-25
修回日期:
2019-07-22
出版日期:
2020-03-25
发布日期:
2020-05-18
通讯作者:
刘小平
E-mail:liuxp3@mail.sysu.edu.cn
作者简介:
李培林(1996— ),男,广东广州人,硕士生,研究方向为土地利用变化监测。E-mail:liplin6@mail2.sysu.edu.cn
基金资助:
LI Peilin1, LIU Xiaoping1,*(), HUANG Yinghuai1, ZHANG Honghui2
Received:
2019-01-25
Revised:
2019-07-22
Online:
2020-03-25
Published:
2020-05-18
Contact:
LIU Xiaoping
E-mail:liuxp3@mail.sysu.edu.cn
Supported by:
摘要:
不透水面作为城市化水平以及城市环境的重要评价指标,其提取已经是当下的研究热点。与单时相影像相比,时间序列制图能够获取其准确的变化趋势,对于监测城市的快速发展具有重要意义。本文以广州市主城区为研究区,以Google Earth Engine平台为基础,利用2000—2017年的Landsat TOA影像计算BCI和NDVI,并通过自适应迭代法确定它们的阈值,从而提取初始的不透水面,然后进行时间一致性检验,使不透水面时间序列更加合理。研究结果表明:①BCI与NDVI的结合以及时间一致性检验能够提高不透水面的提取质量;②本文中不透水面提取的平均总体精度为90.4%,平均Kappa系数为0.812;③在2000—2017年广州市主城区不透水面面积增加近一倍,但增速有所放缓。④新增的不透水面主要集中在原本相对落后的主城区外围;⑤高程、道路密度和购物场所密度等是影响广州市主城区不透水面扩张的主要因素。
李培林, 刘小平, 黄应淮, 张鸿辉. 基于GEE平台的广州市主城区不透水面时间序列提取[J]. 地球信息科学学报, 2020, 22(3): 638-648.DOI:10.12082/dqxxkx.2020.190047
LI Peilin, LIU Xiaoping, HUANG Yinghuai, ZHANG Honghui. Mapping Impervious Surface Dynamics of Guangzhou Downtown based on Google Earth Engine[J]. Journal of Geo-information Science, 2020, 22(3): 638-648.DOI:10.12082/dqxxkx.2020.190047
[1] | Weng Q . Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends[J]. Remote Sensing of Environment, 2012,117:34-49. |
[2] | Arnold C L, Gibbons C J . Impervious surface coverage: The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258. |
[3] | Schueler T . The importance of imperviousness[J]. Watershed protection techniques, 1994,1(3):100-101. |
[4] | Sawaya K E, Olmanson L G, Heinert N J , et al. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery[J]. Remote Sensing of Environment, 2003,88(1-2):144-156. |
[5] | 徐涵秋, 王美雅 . 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016,20(5):1270-1289. |
[ Xu H Q, Wang M Y . Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016,20(5):1270-1289. ] | |
[6] | Powell R L, Roberts D A, Dennison P E , et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267. |
[7] | Xu H . Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering & Remote Sensing, 2010,76(5):557-565. |
[8] | 向超, 朱翔, 胡德勇 , 等. 近20年京津唐地区不透水面变化的遥感监测[J]. 地球信息科学学报. 2018,20(5):684-693. |
[ Xiang C, Zhu X, Hu D Y , et al. Monitoring of the impervious surface with multi-resource remote sensing images in Beijing-Tianjin-Tangshan urban agglomeration in the past two decades[J]. Journal of Geo-information Science, 2018,20(5):684-693. ] | |
[9] | Bauer M E, Loffelholz B C, Wilson B. Estimating and mapping impervious surface area by regression analysis of Landsat imagery[M]. Remote sensing of impervious surfaces. Boca Raton: CRC Press, 2007: 31-48. |
[10] | Sebari I, He D . Automatic fuzzy object-based analysis of VHSR images for urban objects extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,79:171-184. |
[11] | Wu C . Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004,93(4):480-492. |
[12] | Deng C, Wu C . BCI: A biophysical composition index for remote sensing of urban environments[J]. Remote Sensing of Environment, 2012,127:247-259. |
[13] | Hu D, Chen S, Qiao K , et al. Integrating CART algorithm and multi-source remote sensing data to estimate sub-pixel impervious surface coverage: A case study from Beijing Municipality, China[J]. Chinese Geographical Science, 2017,27(4):614-625. |
[14] |
Lu D, Moran E, Hetrick S . Detection of impervious surface change with multitemporal Landsat images in an urban-rural frontier[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(3):298-306.
doi: 10.1016/j.isprsjprs.2010.10.010 pmid: 21552379 |
[15] | 王燕燕, 于海洋 . 基于倾斜摄影综合SVM与模糊规则的城市不透水面信息提取[J]. 地理与地理信息科学, 2018,34(6):20-26. |
[ Wang Y Y, Yu H Y . Urban impervious surface extraction by integrating SVM and fuzzy rules based on oblique photography[J]. Geography and Geo-Information Science, 2018,34(6):20-26. ] | |
[16] | 左家旗, 王泽根, 边金虎 , 等. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019,31(3):1-9. |
[ Zuo J Q, Wang Z G, Bian J H et al. Research review of remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019,31(3):1-9. ] | |
[17] | 广州市统计局. 广州统计年鉴-2018[M]. 北京: 中国统计出版社, 2018. |
[ Guangzhou Statistics Bureau. Guangzhou statistical yearbook-2018[M]. Beijing: China Statistics Press, 2018. ] | |
[18] | Chander G, Markham B L, Helder D L . Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment. 2009,113(5):893-903. |
[19] | Gorelick N, Hancher M, Dixon M , et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment. 2017,202:18-27. |
[20] | Meng Q, Zhang L, Sun Z , et al. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China[J]. Remote Sensing of Environment, 2018,204:826-837. |
[21] | Zhang L, Weng Q . Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,113:86-96. |
[22] | Cheng Y, Zhao L, Wan W , et al. Extracting urban areas in China using DMSP/OLS nighttime light data integrated with biophysical composition information[J]. Journal of Geographical Sciences. 2016,26(3):325-338. |
[23] | 徐涵秋 . 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595. |
[ Xu H Q , A Study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):585-595. ] | |
[24] | 赵英时 等. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2013: 12, 502. |
[ Zhao Y S et al. Principles and methods of remote sensing application analysis[M]. Beijing: Science Press, 2013: 12, 502. ] | |
[25] | 李晶, 徐涵秋, 李霞 , 等. 水土流失区马尾松林植被提取的土壤调节指数分析[J]. 地球信息科学学报, 2015,17(9):1128-1134. |
[ Li J, Xu H Q, Li X et al. Vegetation information extraction of pinus massoniana forest in soil erosion areas using soil-adjusted vegetation index[J]. Journal of Geo-information Science, 2015,17(9):1128-1134. ] | |
[26] | 贾祎琳, 张文, 孟令奎 . 面向GF-1影像的NDWI分割阈值选取方法研究[J]. 国土资源遥感. 2019,31(1):95-100. |
[ Jia W L, Zhang W, Meng L K . A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing For Land & Resources, 2019,31(1):95-100. ] | |
[27] | 徐蓉, 张增祥, 赵春哲 . 湖泊水体遥感提取方法比较研究[J]. 遥感信息, 2015,30(1):111-118. |
[ Xu R, Zhang Z X, Zhao C Z . Different models used in extraction of lake water body based on MODIS data[J]. Remote Sensing Information, 2015,30(1):111-118. ] | |
[28] | Li X, Gong P, Liang L . A 30-year (1984-2013) record of annual urban dynamics of Beijing City derived from Landsat data[J]. Remote Sensing of Environment. 2015,166:78-90. |
[29] | Fitzpatrick-Lins K . Comparison of sampling procedures and data analysis for a land-use and land-cover map[J]. Photogrammetric Engineering and Remote Sensing, 1981,47(3):343-351. |
[30] | Wang J F, Li X H, Christakos G , et al. Geographical detectors based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-127. |
[31] | Gong P, Li X, Zhang W . 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing[J]. Science Bulletin., 2019,64(11):756-763. |
[32] | 刘纪远, 匡文慧, 张增祥 , 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J]. 地理学报, 2014,69(1):3-14. |
[ Liu J Y, Kuang W H, Zhang Z X , et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s[J]. Journal of Geographical Sciences, 2014,69(1):3-14. ] | |
[33] |
Li X, Gong P . An “exclusion-inclusion” framework for extracting human settlements in rapidly developing regions of China from Landsat images[J]. Remote Sensing of Environment, 2016,186:286-296.
doi: 10.1016/j.rse.2016.08.029 |
[1] | 帅艳民, 马现伟, 曲歌, 邵聪颖, 刘涛, 刘守民, 黄华兵, 谷玲霄, 拉提帕·吐尔汗江, 梁继, 李玲. 协同多时相波谱特征的不透水面信息级联提取[J]. 地球信息科学学报, 2021, 23(1): 171-186. |
[2] | 陈如如, 胡中民, 李胜功, 郭群. 不同数据源归一化植被指数在中国北方草原区的应用比较[J]. 地球信息科学学报, 2020, 22(9): 1910-1919. |
[3] | 蒲东川, 王桂周, 张兆明, 牛雪峰, 何国金, 龙腾飞, 尹然宇, 江威, 孙嘉悦. 基于独立成分分析和随机森林算法的城镇用地提取研究[J]. 地球信息科学学报, 2020, 22(8): 1597-1606. |
[4] | 陈炜, 黄慧萍, 田亦陈, 杜云艳. 基于Google Earth Engine平台的三江源地区生态 环境质量动态监测与分析[J]. 地球信息科学学报, 2019, 21(9): 1382-1391. |
[5] | 高黎明,张乐乐. 青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019, 21(9): 1318-1329. |
[6] | 蔡博文,王树根,王磊,邵振峰. 基于深度学习模型的城市高分辨率遥感影像 不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1420-1429. |
[7] | 梁立, 李鑫杨, 刘庆生, 刘高焕, 黄翀, 李贺. 基于多源遥感与地形信息的北极城镇用地信息提取[J]. 地球信息科学学报, 2019, 21(6): 969-982. |
[8] | 陈冰倩, 张友水, 程璟媛, 赵雪. 福州市地表温度热点及时空变化分析[J]. 地球信息科学学报, 2019, 21(5): 710-719. |
[9] | 刘凯, 彭力恒, 李想, 谭敏, 王树功. 基于Google Earth Engine的红树林年际变化监测研究[J]. 地球信息科学学报, 2019, 21(5): 731-739. |
[10] | 杜保佳, 张晶, 王宗明, 毛德华, 张淼, 吴炳方. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J]. 地球信息科学学报, 2019, 21(5): 740-751. |
[11] | 阎世杰, 王欢, 焦珂伟. 京津冀地区植被时空动态及定量归因[J]. 地球信息科学学报, 2019, 21(5): 767-780. |
[12] | 郑海亮, 房世峰, 刘成程, 吴金华, 杜加强. 青藏高原月NDVI时空动态变化及其对气候变化的 响应[J]. 地球信息科学学报, 2019, 21(2): 201-214. |
[13] | 樊智宇, 詹庆明, 刘慧民, 杨晨, 夏宇. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019, 21(2): 226-235. |
[14] | 李杨, 王杰, 黄春林. 一种基于归一化扰动模型的积雪和植被覆盖度反演方法[J]. 地球信息科学学报, 2019, 21(12): 1955-1964. |
[15] | 江洪, 袁亚伟, 王森. 阴影消除植被指数(SEVI)去除地形本影和落影干扰的性能评估与应用[J]. 地球信息科学学报, 2019, 21(12): 1977-1986. |
|