地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (3): 628-637.doi: 10.12082/dqxxkx.2020.190569
聂拼1, 梁明2,3,*(), 李玉洁2,3, 游欣妍2,3, 孙晓娟4
收稿日期:
2019-09-30
修回日期:
2019-12-27
出版日期:
2020-03-25
发布日期:
2020-05-18
通讯作者:
梁明
E-mail:lming@mail.ccnu.edu.cn
作者简介:
聂 拼(1996— ),女,湖南娄底人,硕士生,主要从事时空数据的建模与分析研究。E-mail:mg1927070@smail.nju.edu.cn
基金资助:
NIE Pin1, LIANG Ming2,3,*(), LI Yujie2,3, YOU Xinyan2,3, SUN Xiaojuan4
Received:
2019-09-30
Revised:
2019-12-27
Online:
2020-03-25
Published:
2020-05-18
Contact:
LIANG Ming
E-mail:lming@mail.ccnu.edu.cn
Supported by:
摘要:
土地利用/土地覆盖受人类活动和城市的快速扩张的影响发生了巨大的变化,这种变化对生态环境和地表景观的影响极大。土地利用/土地覆盖的变化过程既受自然、经济等多种因素的影响,也是人类活动规律和自然因素制约的外部表征。因此研究土地利用/土地覆盖的变化过程具有重要的意义。土地利用/覆盖变化的监测和分析,在传统的方法中侧重于分别对各个时空快照上土地利用结构的整体差异的研究,割裂了不同快照间土地利用单元在演化过程上的有机联系。本文以序列土地利用数据构成的土地变化过程为核心研究对象,在土地变化过程的最邻近时空距离度量的基础上,开展基于蒙特卡洛随机模拟的土地变化过程的时空聚集性度量,量化分析土地利用变化过程时空聚集模式的显著性。使用淮南市市辖区2008—2017年土地利用数据,选取典型的时空演化类型(任意2年间从“耕地”演变为“草地”)进行实证研究,结果表明此类土地变化过程在过去10年呈现出时空聚集模式,但统计上并不显著。本文的研究有利于把握土地利用单元在时空上的演变过程,探查土地利用变化过程中潜在的时空演化模式。
聂拼, 梁明, 李玉洁, 游欣妍, 孙晓娟. 基于最邻近时空距离的土地变化过程时空模式分析[J]. 地球信息科学学报, 2020, 22(3): 628-637.DOI:10.12082/dqxxkx.2020.190569
NIE Pin, LIANG Ming, LI Yujie, YOU Xinyan, SUN Xiaojuan. Spatiotemporal Model Analysis of Land Change Process based on Nearest Spatiotemporal Distance[J]. Journal of Geo-information Science, 2020, 22(3): 628-637.DOI:10.12082/dqxxkx.2020.190569
[1] | Ghurah M A, Kamarudin M, Wahab N A , et al. Temporal change detection of land use/land cover using GIS and remote sensing techniques in South Ghor Regions, Al-Karak, Jordan[J]. Journal of Fundamental and Applied Sciences, 2018,10(1S):95-111. |
[2] | He J, Li X, Yao Y , et al. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques[J]. International Journal of Geographical Information Science, 2018,32(10):2076-2097. |
[3] | 宋晓阳, 黄耀欢, 董东林 , 等. 融合数字表面模型的无人机遥感影像城市土地利用分类[J]. 地球信息科学学报, 2018,20(5):703-711. |
[ Song X Y, Huang Y H, Dong D L , et al. Urban land use classification from UAV remote sensing images based on digital surface model[J]. Journal of Geo-information Science, 2018,20(5):703-711. ] | |
[4] | Guo L, Wang D, Qiu J , et al. Spatio-temporal patterns of land use change along the Bohai Rim in China during 1985-2005[J]. Journal of Geographical Sciences, 2009,19(5):568-576. |
[5] | 戴尔阜, 马良 . 土地变化模型方法综述[J]. 地理科学进展, 2018,37(1):152-162. |
[ Dai E F, Ma L . Review on land change modeling approaches[J]. Progress in Geography, 2018,37(1):152-162. ] | |
[6] | 李寅超, 李建松 . 基于过程对象的地表覆盖变化时空过程表达模型[J]. 吉林大学学报(地球科学版), 2017,47(3):916-924. |
[ Li Y C, Li J S . A Spatio-Temporal temporal process expression model for land cover based on process object[J]. Journal of Jilin University (Earth Science Edition), 2017,47(3):916-924. ] | |
[7] | Xing J, Sieber R E . A land use/land cover change geospatial cyberinfrastructure to integrate big data and temporal topology[J]. International Journal of Geographical Information Science, 2016,30(3):573-593. |
[8] | 刘淑燕, 余新晓, 李庆云 , 等. 基于CA-Markov模型的黄土丘陵区土地利用变化[J]. 农业工程学报, 2010,26(11):297-303. |
[ Liu S Y, Yu X X, Li Q Y , et al. Land use change in loess hilly region based on CA-Markov model[J]. Transactions of the CSAE, 2010,26(11):297-303. ] | |
[9] | 李少英, 刘小平, 黎夏 , 等. 土地利用变化模拟模型及应用研究进展[J]. 遥感学报, 2017,21(3):329-340. |
[ Li S Y, Liu X P, Li X , et al. Simulation model of land use dynamics and application: Progress and prospects[J]. Journal of Remote Sensing, 2017,21(3):329-340. ] | |
[10] | Jiang Z . Spatial big data analytics: Classification techniques for earth observation imagery[D]. Minnesota: University of Minnesota, 2016. |
[11] |
Robinson D T, Di Vittorio A, Alexander P , et al. Modelling feedbacks between human and natural processes in the land system[J]. Earth System Dynamics (Online), 2018,9(2):895-914.
doi: 10.1098/rsta.2012.0412 pmid: 24080621 |
[12] | Tang W, Feng W, Jia M . Massively parallel spatial point pattern analysis: Ripley's K function accelerated using graphics processing units[J]. International Journal of Geographical Information Science, 2015,29(3):412-439. |
[13] |
Hendricks K E, Christman M, Roberts P D . Spatial and temporal patterns of commercial citrus trees affected by Phyllosticta citricarpa in Florida[J]. Scientific Reports, 2017,7(1):1641-1652.
doi: 10.1038/s41598-017-01901-2 pmid: 28487533 |
[14] | Hamdi S M, Aydin B, Angryk R A. A pattern growth-based approach for mining spatiotemporal co-occurrence patterns[C]. IEEE, 2016. |
[15] | 徐枫, 陈袁芳, 蔡建南 , 等. 基于点过程模拟的时空级联模式统计挖掘方法[J]. 中南大学学报(自然科学版), 2017,48(10):2717-2724. |
[ Xu F, Chen Y F, Cai J N , et al. A statistical approach for discovering spatio-temporal cascading patterns based on point process simulation[J]. Journal of Central South University (Science and Technology), 2017,48(10):2717-2724. ] | |
[16] |
Costa M A, Kulldorff M . Maximum linkage space-time permutation scan statistics for disease outbreak detection[J]. International Journal of Health Geographics, 2014,13(1):20-34.
doi: 10.1186/1476-072X-13-20 pmid: 24916839 |
[17] | Law J, Quick M, Chan P W . Analyzing hotspots of crime using a bayesian spatiotemporal modeling approach: A case study of violent crime in the greater toronto area[J]. Geographical Analysis, 2015,47(1):1-19. |
[18] | Hadi F T, João G. An eigenvector-based hotspot detection[R]. Angra do Heroísmo: Proceedings of the 16th Portuguese Conference on Artificial Intelligence(EPIA 2013), 2013: 251-260. |
[19] |
Coleman M, Coleman M, Mabuza A M , et al. Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes[J]. Malaria Journal, 2009,8(1):68-74.
doi: 10.1186/1475-2875-8-68 pmid: 19374738 |
[20] |
Ihantamalala F A, Rakotoarimanana F M J, Ramiadantsoa T, et al. Spatial and temporal dynamics of malaria in Madagascar[J]. Malaria Journal, 2018,17(1):58-71.
doi: 10.1186/s12936-018-2206-8 pmid: 29391023 |
[21] |
孙云华, 郭涛, 崔希民 , 等. 基于行为聚类算法的土地利用聚类适宜性分析研究[J]. 地球信息科学学报, 2016,18(3):396-405.
doi: 10.3724/SP.J.1047.2016.00396 |
[ Sun Y H, Guo T, Cui X M , et al. Suitability analysis on behavior-based aggregation of land use classification in Yunnan Province[J]. Journal of Geo-information Science, 2016,18(3):396-405. ]
doi: 10.3724/SP.J.1047.2016.00396 |
|
[22] | Maciel A M, Camara G, Vinhas L , et al. A spatiotemporal calculus for reasoning about land-use trajectories[J]. International Journal of Geographical Information Science, 2019,33(1):176-192. |
[23] | 周成虎, 李婷, 裴韬 . 时空点过程:一种新的地学数据模型、分析方法和观察视角[J]. 地球信息科学学报, 2013,15(6):793-800. |
[ Zhou C H, Li T, Pei T . Spatiotemporal Point Process: A New Data Model, Analysis Methodology and Viewpoint for Geoscientific Problem[J]. Journal of Geo-information Science, 2013,15(6):793-800. ] | |
[24] | 王国杰, 廖善刚 . 土地利用强度变化的空间异质性研究[J]. 应用生态学报, 2006,17(4):611-614. |
[ Wang G J, Liao S G . Spatial heterogeneity of land use intensity[J]. Chinese Journal of Applied Ecology, 2006,17(4):611-614. ] | |
[25] | Campelo C E, Bennett B, Dimitrova V. From polygons and timestamps to dynamic geographic features: Grounding a spatio-temporal geo-ontology[C]. Springer, 2012. |
[26] | Maciel A M, Vinhas L, Camara G, et al. An interval-based approach for reasoning about land use change trajectories[C]. IEEE, 2018. |
[27] | Hamdi S M, Aydin B, Angryk R A. A pattern growth-based approach for mining spatiotemporal co-occurrence patterns[C]. IEEE, 2016. |
[28] | Dodge Y . The Concise Encyclopedia of Statistics[M]. New York: Springer, 2008. |
[29] | 郑优男, 王晓辉, 彭书传 . 基于RS与GIS技术分析淮南矿区土地利用变化[J]. 环境工程, 2015,33(S1):764-768. |
[ Zheng Y N, Wang X H, Peng S C . Land use changes in Huainan mining area based on RS and GIS technology[J]. Environmental Engineering, 2015,33(S1):764-768. ] | |
[30] | 黄家政, 赵萍, 郑刘根, 周淑媛 . 淮南矿区土地利用/覆盖时空变化特征及预测[J]. 合肥工业大学学报(自然科学版), 2014,37(8):981-986. |
[ Huang J Z, Zhao P, Zheng L G , et al. Spatial-temporal characteristics and prediction of land use/cover change in Huainan mining area[J]. Journal of Hefei University of Technology, 2014,37(8):981-986. ] | |
[31] | 秦云 . 基于SWAT模型的梁子湖流域非点源污染分析[D]. 武汉:湖北大学, 2017. |
[ Qin Y . Non-point source pollution analysis of Liangzi Lake based on SWAT model[D]. Wuhan: Hubei University, 2017. ] | |
[32] | 许昱堃, 陈广洲, 尤朝辉 , 等. 淮南市2001-2015年可持续发展研究——基于改进的生态足迹模型[J]. 安徽建筑大学学报, 2019,27(2):55-62. |
[ Xu Y K, Chen G Z, You Z H , et al. On the sustainable development of huainan city from 2001 to 2015 based on improved ecological footprint[J]. Journal of Anhui Jianzhu University, 2019,27(2):55-62. ] | |
[33] | 杨显明, 焦华富, 许吉黎 . 煤炭资源型城市空间结构演化过程、模式及影响因素——基于淮南市的实证研究[J]. 地理研究, 2015,35(10):1256-1264. |
[ Yang X M, Jiao H F, Xu J L . The path, evolution and mechanism of the industry structure locking-in for the coal resource-dependent city: A case study of Huaibei[J]. Scientia Geographica Sinica, 2015,35(10):1256-1264. ] |
[1] | 裴韬, 王席, 宋辞, 刘亚溪, 黄强, 舒华, 陈晓, 郭思慧, 周成虎. COVID-19疫情时空分析与建模研究进展[J]. 地球信息科学学报, 2021, 23(2): 188-210. |
[2] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[3] | 郑晓琳, 刘启亮, 刘文凯, 吴智慧. 智能卡和出租车轨迹数据中蕴含城市人群活动模式的差异性分析[J]. 地球信息科学学报, 2020, 22(6): 1268-1281. |
[4] | 叶钰, 秦建新, 胡顺石. 长沙市热岛效应时空特征变化研究[J]. 地球信息科学学报, 2017, 19(4): 518-527. |
[5] | 杜国明, 刘美, 孟凡浩, 匡文慧, 春香, 冯悦. 基于地学知识的大尺度土地利用/土地覆盖精细化分类方法研究[J]. 地球信息科学学报, 2017, 19(1): 91-100. |
[6] | 杨喜平, 方志祥, 赵志远, 萧世伦, 尹凌. 城市人群聚集消散时空模式探索分析——以深圳市为例[J]. 地球信息科学学报, 2016, 18(4): 486-492. |
[7] | 徐敏, 曹春香, 程锦泉, 吴永胜, 谢旭, 李小文. 甲流感疫情时空聚集性的GIS分析[J]. 地球信息科学学报, 2010, 12(5): 707-712. |
[8] | 钟凯文, 孙彩歌, 解靓. 基于GIS的广州市土地利用遥感动态监测与变化分析[J]. 地球信息科学学报, 2009, 11(1): 111-116. |
|