地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (7): 1296-1311.doi: 10.12082/dqxxkx.2021.200348
彭振华1,2(), 李艳忠1,*(
), 余文君1, 星寅聪1, 冯爱青3, 杜深文1
收稿日期:
2020-07-05
修回日期:
2020-08-31
出版日期:
2021-07-25
发布日期:
2021-09-25
通讯作者:
* 李艳忠(1984— ),男,山东菏泽人,博士,硕导,讲师,主要从事水文气象研究。E-mail: liyz_egi@163.com作者简介:
彭振华(1999— ),男,江西吉安人,硕士生,主要从事水文气象研究。E-mail: pzh15170669358@163.com
基金资助:
PENG Zhenhua1,2(), LI Yanzhong1,*(
), YU Wenjun1, XING Yincong1, FENG Aiqing3, DU Shenwen1
Received:
2020-07-05
Revised:
2020-08-31
Online:
2021-07-25
Published:
2021-09-25
Supported by:
摘要:
遥感降水产品相对于气象站观测数据能够更好地反映降水的空间分布特征,对其进行不同气候区上的差异性评价对数据产品选择和遥感降水反演算法改进均有重大意义。本文选择中国典型气候区(干旱区、过渡区、湿润区和青藏高原地区),以649个经偏差矫正后的气象站降水数据为标准,评估了5种国际常用的遥感降水产品 (CHIRPS v2.0, CMORPH v1.0, MSWEP v2.0, PERSIANN-CDR, TRMM 3B42v7) 在中国典型气候区的适用性。研究发现,各产品的性能存在空间差异性。MSWEP在各气候区的相关系数(CC),Kling-Gupta efficiency(KGE),均方根误差(RMSE)等基本统计性能指标均优于其他4种产品。相对偏差(BIAS)方面,在干旱区、湿润区、青藏高原、过渡区表现较优越的产品分别为MSWEP、CHIRPS、PERSIANN、TRMM。在评估遥感降水产品对降水事件发生概率的估算能力方面,选择了误报率(FAR,降水事件预报错误的比例)、命中率(POD,降水事件预报正确的比例)、关键成功指数(CSI,降水事件正确预报综合性能)、精度指数(ACC,等级预报综合性能)和降水等级概率分布(PDF)5个指标作为评估依据,结果表明,就POD,CSI和ACC而言,在各气候区MSWEP表现明显优于其他产品;对于FAR,TRMM和CMORPH产品在湿润区表现优越,其余气候区仍以MSWEP表现较为优越;就PDF而言,PERSIANN和MSWEP产品对1~20 mm的日降水量的估算偏高,特别是MSWEP在青藏高原和湿润区对小雨的估算频率明显偏高, MSWEP有待在该区提高频率预报的能力。综合而言,多源数据融合的MSWEP在各气候区的基本统计性能和降水等级性能较好,可作为可靠的降水数据源用于中国水文气象研究,同时也表明多源数据融合产品具有良好的应用前景。
彭振华, 李艳忠, 余文君, 星寅聪, 冯爱青, 杜深文. 遥感降水产品在中国不同气候区的适用性研究[J]. 地球信息科学学报, 2021, 23(7): 1296-1311.DOI:10.12082/dqxxkx.2021.200348
PENG Zhenhua, LI Yanzhong, YU Wenjun, XING Yincong, FENG Aiqing, DU Shenwen. Research on the Applicability of Remote Sensing Precipitation Products in Different Climatic Regions of China[J]. Journal of Geo-information Science, 2021, 23(7): 1296-1311.DOI:10.12082/dqxxkx.2021.200348
表2
遥感降水产品基本信息
名称 | 时段 | 空间跨度 | 数据源 | 数据下载地址 |
---|---|---|---|---|
CHIRPS v2.0 | 1981—2018 | 50°N—50°S | G,S,R,A | |
CMORPH v1.0 | 1998—2019 | 60°N—60°S | G,S | |
PERSIANN-CDR | 1983—2018 | 60°N—60°S | G,S | |
TRMM | 1998—2018 | 50°N—50°S | G,S | |
MSWEP v2.0 | 1979—2014 | 全球 | G,S,R,A | |
[1] | 刘元波, 傅巧妮, 宋平, 等. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11):1162-1172. |
[ Liu Y B, Fu Q N, Song P, et al. Satellite retrieval of precipitation: An overview[J]. Advances in Earth Sciences, 2011, 26(11):1162-1172. ] | |
[2] | Taplador F J, Turk F J, Petersen W, et al. Global precipitation measurement: methods, datasets and applications[J]. Atmospheric Research, 2012,104-105:70-97. |
[3] |
Xu F L, Guo B, Ye B, et al. Systematical evaluation of GPM IMERG and TRMM 3B42V7 precipitation products in the Huang-Huai-Hai Plain, China[J]. Remote Sensing, 2019, 11(6):97.
doi: 10.3390/rs11010097 |
[4] | 徐淑琴, 丁星臣, 王斌. 多卫星遥感降水产品寒区误差时空特征分析[J]. 东北农业大学学报, 2017, 48(11):63-73. |
[ Xu S Q, Ding X C, Wang B. Alternative observation of ground stations by multiple satellite remote sensing precipitation in alpine region[J]. Journal of Northeast Agricultural University, 2017, 48(11):63-73. ] | |
[5] | Sandra P, Rodrigo P O, Andre M. Validation of remote-sensing precipitation products for Angola[J]. Meteorological Applications, 2015, 22(3):395-409. |
[6] |
Mohamed S, Adel M, Quzai K H, et al. Performance assessment of sub-daily and daily precipitation estimates derived from GPM and GSMaP products over an arid environment[J]. Remote Sensing, 2019, 11:2840.
doi: 10.3390/rs11232840 |
[7] |
Fu Y, Xia J Z, Yuan W P, et al. Assessment of multiple precipitation products over major river basins of China[J]. Theoretical and Applied Climatology, 2016, 123(1/2):11-22.
doi: 10.1007/s00704-014-1339-0 |
[8] | 王书霞, 张利平, 喻笑勇, 等. 遥感降水产品在澜沧江流域径流模拟中的适用性研究[J]. 长江流域资源与环境, 2019, 28(6):1365-1374. |
[ Wang S X, Zhang L P, Yu X Y, et al. Application of remote sensing precipitation products in runoff simulation over the lancang river basin[J]. Resources and Environment in the Yangtze Basin, 2019, 28(6):1365-1374. ] | |
[9] |
Liu J, Xia J, She D X, et al. Evaluation of six satellite-based precipitation products and their ability for capturing characteristics of extreme precipitation events over a climate transition area in China[J]. Remote Sensing, 2019, 11:1477.
doi: 10.3390/rs11121477 |
[10] |
Bai P, Liu X M. Evaluation of five satellite-based precipitation products in two gauge-scarce basins on the Tibetan Plateau[J]. Remote Sensing, 2018, 10(8):1316.
doi: 10.3390/rs10081316 |
[11] |
Beck H E, Pan M, Roy T, et al. Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS[J]. Hydrology and Earth System Sciences, 2019, 23(1):207-224.
doi: 10.5194/hess-23-207-2019 |
[12] | Goodison B, Sevruk B, Klemm S. WMO solid precipitation measurement inter-comparison: Objectives, methodology, analysis[J]. Atmospheric Deposition, 1989, 179:57-64. |
[13] |
Ye B S, Yang D Q, Ding Y J, et al. A bias-corrected precipitation climatology for China[J]. Journal of Hydrometeorology, 2004, 5(6):1147-1160.
doi: 10.1175/JHM-366.1 |
[14] |
Li Y Z, Feng A Q, Liu W B, et al. Variation of aridity index and the role of climate variables in the Southwest China[J]. Water, 2017, 9(10):743.
doi: 10.3390/w9100743 |
[15] |
Liu X M, Yang T T, Hsu K L, et al. Evaluating the streamflow simulation capability of PESIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2017, 21(1):169.
doi: 10.5194/hess-21-169-2017 |
[16] | Sevruk B, Hamon W. International comparison of national precipitation gauges with a reference pit gauge[J]. Instruments and Observing Methods Report, 1984: 17. |
[17] |
Li Y Z, Liu C M, Yu W J, et al. Response of streamflow to environmental changes: A Budyko-type analysis based on 144 river basins over China[J]. Science of the Total Environment, 2019, 664:824-833.
doi: 10.1016/j.scitotenv.2019.02.011 |
[18] | Funk C, Peterson P, Landsfeld M, et al. The climate hazards infrared precipitation with stations: A new environmental record for monitoring extremes[J]. Sentific Data, 2015, 2:150066. |
[19] |
Toteé C, Patricio D, Boogaard H, et al. Evaluation of satellite rainfall estimates for drought and flood monitoring in mozambique[J]. Remote Sensing, 2015, 7:1758.
doi: 10.3390/rs70201758 |
[20] |
Pomeon T, Jacksch D, Diekkruger B. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light[J]. Journal of Hydrology, 2017, 547:222-235.
doi: 10.1016/j.jhydrol.2017.01.055 |
[21] |
Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5:487-503.
doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 |
[22] | Shen Y, Xiong A Y, Wang Y, et al. Performance of high-resolution satellite precipitation products over China[J]. Journal of Geophysical Research, 2010: 115. |
[23] |
Miao C Y, Ashouri H, Hsu K L, et al. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China[J]. Journal of Hydrometeorology, 2015, 16:1387-1396.
doi: 10.1175/JHM-D-14-0174.1 |
[24] |
Tang G Q, Zeng Z Y, Long D, et al. Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7[J]. Journal of Hydrometeorology, 2016, 17:121-137.
doi: 10.1175/JHM-D-15-0059.1 |
[25] |
Beck H E, Van DijkA I J M, Levizzani V, et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data[J]. Hydrology and Earth System Sciences, 2017, 21:589-615.
doi: 10.5194/hess-21-589-2017 |
[26] |
Beck H E, Vergopolan N, Pan M, et al. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling[J]. Hydrology and Earth System Sciences, 2017, 21:6201-6217.
doi: 10.5194/hess-21-6201-2017 |
[27] |
Chen S, Hong Y, Gourley J J, et al. Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States[J]. Water Resources Research, 2013, 49(12):8174-8186.
doi: 10.1002/2012WR012795 |
[28] |
Tang G Q, Ma Y Z, Long D, et al. Evaluation of GPM Day-1 IMERG and TMPA Version7 legacy products over Mainland China at multiple spatiotemporal scales[J]. Journal of Hydrology, 2016, 533:152-167.
doi: 10.1016/j.jhydrol.2015.12.008 |
[29] | Cressie N. The origins of kriging[J]. Mathematical Geosciences, 1990, 22:239-252. |
[30] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001, 106:7183-7192.
doi: 10.1029/2000JD900719 |
[31] |
Guo, H, Bao A, Liu T, et al. Evaluation of PERSIANN-CDR for meteorological drought monitoring over China[J]. Remote Sensing, 2016, 8(379):1-17.
doi: 10.3390/rs8010001 |
[32] |
Li Y Z, YU W J, Wang K W, et al. Comparison of the aridity index and its drivers in eight climatic regions in China in recent years and in future projections[J]. International Journal of Climatology, 2019, 39(14):5256-5272.
doi: 10.1002/joc.v39.14 |
[33] |
Scheuerer M, Hamill T M. Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions[J]. Monthly Weather Review, 2015, 143(11):4578-4596.
doi: 10.1175/MWR-D-15-0061.1 |
[34] | Li W, Duan Q, Miao C, et al. A review on statistical postprocessing methods for hydrometeorological ensemble forecasting[J]. Wiley Interdisciplinary Reviews: Water, 2017, 4(6):e1246. |
[35] | Ma Y, Hong Y, Chen Y, et al. Performance of optimally merged multisatellite precipitation products using the dynamic bayesian model averaging scheme over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2):814-834. |
[1] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[2] | 刘垚明, 李宛静, 张修远, 张宇恒, 李然, 周琪. 基于多源开放数据的中国农村可达指数评估[J]. 地球信息科学学报, 2023, 25(4): 783-793. |
[3] | 马力, 潘竟虎. 中国荒野地空间识别及时空演变[J]. 地球信息科学学报, 2023, 25(2): 324-339. |
[4] | 梅强, 胡勤友, 刘希亮, 赵瑞娜, 杨春, 王鹏, 戚玉玲, 杨洋, 袁启睿. 全球LNG海上运输网络演化及中国贸易现状分析[J]. 地球信息科学学报, 2022, 24(9): 1701-1716. |
[5] | 吕爱锋, 亓珊珊. 遥感及再分析降水产品在缺资料干旱内陆盆地的适用性评估[J]. 地球信息科学学报, 2022, 24(9): 1817-1834. |
[6] | 杨泽龙, 李艳忠, 白鹏, 杜深文, 郝奕, 钱畅, 李超凡. 1980—2020年中国九大流域蒸散发及其组分时空评估[J]. 地球信息科学学报, 2022, 24(5): 889-901. |
[7] | 勾艺超, 魏铭, 王姣娥, 王成金. 疫情背景下中国居民城际出行恢复力、恢复模式与影响因素[J]. 地球信息科学学报, 2022, 24(10): 1941-1956. |
[8] | 王传阳, 盛科荣, 张杰. 中国城市网络核心-边缘结构演化及影响因素研究——基于制造业企业网络视角[J]. 地球信息科学学报, 2022, 24(1): 141-152. |
[9] | 林中立, 徐涵秋. 基于局地气候分区体系的福州城市热环境研究[J]. 地球信息科学学报, 2022, 24(1): 189-200. |
[10] | 张子威, 黄秋昊, 陆羽, 李满春, 陈振杰, 李飞雪. 中国居民预期寿命及其影响因素的空间差异分析[J]. 地球信息科学学报, 2021, 23(9): 1575-1585. |
[11] | 胡最, 闵庆文. 构建农业文化遗产数字化保护的概念框架探讨[J]. 地球信息科学学报, 2021, 23(9): 1632-1645. |
[12] | 蔡一乐, 曹诗颂, 杜明义, 李善飞, 陈姗姗. 中国地级市人为热总量的估算及驱动因素分析[J]. 地球信息科学学报, 2021, 23(3): 405-418. |
[13] | 李颉, 郑步云, 王劲峰. 2008—2018年中国手足口病时空分异特征[J]. 地球信息科学学报, 2021, 23(3): 419-430. |
[14] | 谢玲, 王宏卫, 刘素红, 高一薄, 玛丽亚木·玛木提, 伊素燕, 马晨. 气象因素影响下中国手足口病时空演化特征研究[J]. 地球信息科学学报, 2021, 23(3): 431-442. |
[15] | 郭紫甜, 王春梅, 刘欣, 庞国伟, 朱梦阳, 王晋卿. 基于小流域抽样单元的中国FROM-GLC30数据精度评价[J]. 地球信息科学学报, 2021, 23(3): 524-535. |
|