地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (7): 1312-1324.doi: 10.12082/dqxxkx.2021.200605
邢晓语1(), 杨秀春1,2,*(
), 徐斌1,2, 金云翔1, 郭剑3,4, 陈昂2, 杨东1, 王平2, 朱立博5
收稿日期:
2020-10-15
修回日期:
2021-01-21
出版日期:
2021-07-25
发布日期:
2021-09-25
通讯作者:
* 杨秀春(1975— ),女,河北迁安人,博士,研究员,主要从事草地资源遥感研究。E-mail: Yangxiuchun@bjfu.edu.cn作者简介:
邢晓语(1996— ),女,山东淄博人,硕士生,主要从事生态系统服务研究。E-mail: xingxiaoyu51@163.com
基金资助:
XING Xiaoyu1(), YANG Xiuchun1,2,*(
), XU Bin1,2, JIN Yunxiang1, GUO Jian3,4, CHEN Ang2, YANG Dong1, WANG Ping2, ZHU Libo5
Received:
2020-10-15
Revised:
2021-01-21
Online:
2021-07-25
Published:
2021-09-25
Supported by:
摘要:
草原是我国面积最大的陆地生态系统,生物量是反映生态系统质量和功能的关键指标,准确地掌握草原生物量对草原资源合理利用、生态修复、畜牧业高质量发展都具有重要的意义和作用。本研究以内蒙古锡林郭勒盟为研究区,利用高分一号遥感卫星影像,结合216个野外样本数据,采用随机森林算法(Random Forest,RF)对草原地上生物量(Aboveground Biomass,AGB)遥感估算进行了适用性分析与应用。在运用随机森林算法的过程中,进行了K-折交叉验证、多元共线性诊断、偏效应等一系列分析,完成了随机森林模型的构建,同时,将建模结果与其它模型进行了对比,最终实现了锡林郭勒盟草原AGB的反演估算。结果表明:① 随机森林算法能够较好地规避生物量建模中自变量多元共线性的问题;② 随机森林模型在草原AGB估算中较其它模型具有更好的适用性,模型精度达85%,RMSE为202.13 kg/hm2;③ 应用构建的随机森林算法估算了研究区2017年草原AGB,从结果来看,其空间分布上呈现为自东向西逐渐递减的趋势;从草地类型上看,山地草甸类AGB单产最高,温性草原类总产量最高。研究结果将对草原生态系统监测评估和草原宏观管理具有一定的参考价值。
邢晓语, 杨秀春, 徐斌, 金云翔, 郭剑, 陈昂, 杨东, 王平, 朱立博. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7): 1312-1324.DOI:10.12082/dqxxkx.2021.200605
XING Xiaoyu, YANG Xiuchun, XU Bin, JIN Yunxiang, GUO Jian, CHEN Ang, YANG Dong, WANG Ping, ZHU Libo. Remote Sensing Estimation of Grassland Aboveground Biomass based on Random Forest[J]. Journal of Geo-information Science, 2021, 23(7): 1312-1324.DOI:10.12082/dqxxkx.2021.200605
表1
GF-1影像数据信息
采集时间 | 云量覆盖/% | 传感器标识 | 景序列号 | 采集时间 | 云量覆盖/% | 传感器标识 | 景序列号 |
---|---|---|---|---|---|---|---|
2017-07-17 | 0 | WFV1 | 3893398 | 2017-07-17 | 0 | WFV3 | 3892267 |
2017-07-17 | 0 | WFV1 | 3893464 | 2017-07-17 | 0 | WFV4 | 3892289 |
2017-07-17 | 0 | WFV2 | 3893487 | 2017-08-05 | 0 | WFV1 | 3961704 |
2017-07-17 | 0 | WFV2 | 3893486 | 2017-08-30 | 0 | WFV2 | 4048027 |
2017-07-17 | 0 | WFV2 | 3893485 | 2017-08-31 | 0 | WFV3 | 4053670 |
2017-07-17 | 0 | WFV3 | 3892265 | 2017-08-31 | 0 | WFV4 | 4053690 |
2017-07-17 | 0 | WFV3 | 3892266 |
表4
植被指数共线性诊断结果
维数 | 特征值 | 条件指标 | 方差比例 | |||||
---|---|---|---|---|---|---|---|---|
常量 | NDVI | EVI | OSAVI | RVI | SAVI | |||
1 | 5.79 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 0.11 | 7.14 | 0.17 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
3 | 0.06 | 9.54 | 0.06 | 0.02 | 0.26 | 0.00 | 0.02 | 0.00 |
4 | 0.01 | 17.38 | 0.01 | 0.38 | 0.44 | 0.00 | 0.00 | 0.00 |
5 | 0.00 | 31.52 | 0.14 | 0.00 | 0.14 | 0.01 | 0.64 | 0.05 |
6 | 0.00 | 118.62 | 0.62 | 0.59 | 0.15 | 0.99 | 0.34 | 0.94 |
表5
随机森林模型构建结果
模型 | 特征变量 | 解释方差百分比/% | 模型 | 特征变量 | 解释方差百分比/% |
---|---|---|---|---|---|
1 | NDVI、RVI | 75.08 | 14 | NDVI、RVI、SAVI | 76.43 |
2 | NDVI、EVI | 72.66 | 15 | NDVI、OSAVI、SAVI | 74.93 |
3 | NDVI、SAVI | 75.45 | 16 | NDVI、OSAVI、EVI | 75.47 |
4 | NDVI、OSAVI | 72.74 | 17 | RVI、OSAVI、SAVI | 67.32 |
5 | EVI、OSAVI | 67.33 | 18 | RVI、EVI、SAVI | 70.72 |
6 | RVI、EVI | 70.35 | 19 | RVI、OSAVI、EVI | 69.81 |
7 | RVI、SAVI | 68.05 | 20 | OSAVI、EVI、SAVI | 68.11 |
8 | RVI、OSAVI | 65.69 | 21 | NDVI、RVI、OSAVI、EVI | 75.57 |
9 | SAVI、EVI | 64.04 | 22 | NDVI、RVI、OSAVI、SAVI | 75.40 |
10 | SAVI、OSAVI | 66.12 | 23 | NDVI、RVI、EVI、SAVI | 76.40 |
11 | NDVI、EVI、SAVI | 75.26 | 24 | NDVI、OSAVI、EVI、SAVI | 75.75 |
12 | NDVI、RVI、OSAVI | 74.60 | 25 | RVI、OSAVI、EVI、SAVI | 69.70 |
13 | NDVI、RVI、EVI | 75.50 | 26 | NDVI、RVI、OSAVI、EVI、SAVI | 74.98 |
表6
一元曲线回归建模结果
自变量x | 函数 | 方程 | R2 | F |
---|---|---|---|---|
NDVI | 线性函数 | y=8578.34x-682.73 | 0.77 | 535.69 |
指数函数 | y=220.71e6.57x | 0.64 | 281.28 | |
幂函数 | y=13601.63x1.70 | 0.69 | 352.18 | |
RVI | 线性函数 | y=1053.71x-513.01 | 0.55 | 197.42 |
指数函数 | y=282.33e0.74x | 0.39 | 99.96 | |
幂函数 | y=380.49x1.95 | 0.50 | 158.87 | |
EVI | 线性函数 | y=9308.95x-301.56 | 0.43 | 122.90 |
指数函数 | y=272.34e7.60x | 0.41 | 110.52 | |
幂函数 | - | - | - | |
OSAVI | 线性函数 | y=9214.90x-321.26 | 0.65 | 291.12 |
指数函数 | y=301.50e6.86x | 0.51 | 163.04 | |
幂函数 | y=16726.34x1.55 | 0.60 | 234.53 | |
SAVI | 线性函数 | y=10055.66x-407.66 | 0.60 | 231.82 |
指数函数 | y=284.69e7.44x | 0.46 | 135.05 | |
幂函数 | y=19424.01x1.61 | 0.53 | 180.02 |
表8
2017年锡盟不同草原类型AGB鲜重单产、总量
草原类型 | 面积/km2 | AGB鲜重 | |
---|---|---|---|
单产/(kg/hm2) | 总产量/t | ||
低地草甸类 | 26 014 | 1756.45 | 4 569 384 |
山地草甸类 | 1577 | 3029.59 | 477 963 |
改良草地 | 473 | 1092.77 | 51 777 |
沼泽类 | 334 | 2165.15 | 72 456 |
温性草原化荒漠类 | 5122 | 552.77 | 283 132 |
温性草原类 | 108 445 | 1249.61 | 13 551 464 |
温性草甸草原类 | 24 883 | 2616.22 | 6 510 032 |
温性荒漠类 | 142 | 576.49 | 8191 |
温性荒漠草原类 | 29 659 | 596.31 | 1 768 611 |
[1] |
Scurlock J M, Hall D O. The global carbon sink: A grassland perspective[J]. Global Change Biology, 1998, 4(2):229-233.
doi: 10.1046/j.1365-2486.1998.00151.x |
[2] | 张江, 袁旻舒, 张婧, 等. 近30年来青藏高原高寒草地NDVI动态变化对自然及人为因子的响应[J]. 生态学报, 2020, 40(18):6269-6281. |
[ Zhang J, Yuan M S, Zhang J, et al. Responses of the NDVI of alpine grasslands on the Qinghai-Tibetan plateau to climate change and human activities over the last 30 years[J]. Acta Ecologica Sinica, 2020, 40(18):6269-6281. ] | |
[3] | Hieronymus J, Giovanni P, Ulrike T, et al. Grassland biomass balance in the European Alps: Current and future ecosystem service perspectives[J]. Ecosystem Services, 2020, 45,101163. |
[4] |
白永飞, 陈世苹. 中国草地生态系统固碳现状、速率和潜力研究[J]. 植物生态学报, 2018, 42(3):261-264.
doi: 10.17521/cjpe.2018.0031 |
[ Bai Y F, Chen S P. Carbon sequestration of Chinese grassland ecosystems: stock, rate and potential[J]. Chinese Journal of Plant Ecology, 2018, 42(3):261-264. ] | |
[5] | 金云翔, 徐斌, 杨秀春, 等. 内蒙古锡林郭勒盟草原产草量动态遥感估算[J]. 中国科学:生命科学, 2011, 41(12):1185-1195. |
[ Jin Y X, Xu B, Yang X C, et al. Remote sensing dynamic estimation of grass production in Xilinguole, Inner Mongolia[J]. Scientia Sinica (Vitae), 2011, 41(12):1185-1195. ] | |
[6] |
Zeng N, He H, Ren X, et al. The utility of fusing multi-sensor data spatio-temporally in estimating grassland aboveground biomass in the three-river headwaters region of China[J]. International Journal of Remote Sensing, 2020, 41(18):7068-7089.
doi: 10.1080/01431161.2020.1752411 |
[7] | 葛静, 孟宝平, 杨淑霞, 等. 基于ADC和MODIS遥感数据的高寒草地地上生物量监测研究—以黄河源区为例[J]. 草业学报, 2017, 26(7):26-37. |
[ Ge J, Meng B P, Yang S X, et al. Monitoring of above-ground biomass in alpine grassland based on agricultural digital camera and MODIS remote sensing data: A case study in the Yellow River headwater region[J]. Acta Prataculturae Sinica, 2017, 26(7):26-37. ] | |
[8] | 孟宝平, 陈思宇, 崔霞, 等. 基于多源遥感数据的高寒草地生物量反演模型精度—以夏河县桑科草原试验区为例[J]. 草业科学, 2015, 32(11):1730-1739. |
[ Meng B P, Chen S Y, Cui X, et al. The accuracy of grassland vegetation biomass estimated model based on multi-source remote sensing data—as a case of experimental area in Sangke grassland in Xiahe County[J]. Pratacultural Science, 2015, 32(11):1730-1739. ] | |
[9] |
朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局[J]. 植物生态学报, 2004, 28(4):491-498.
doi: 10.17521/cjpe.2004.0067 |
[ Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China[J]. Chinese Journal of Plant Ecology, 2004, 28(4):491-498. ] | |
[10] | 张雅, 尹小君, 王伟强, 等. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6):1012-1021. |
[ Zhang Y, Yin X J, Wang W Q, et al. Estimation of grassland aboveground biomass using Landsat 8 OLI satellite image in the northern hillside of Tianshan mountain[J]. Remote Sensing Technology and Application, 2017, 32(6):1012-1021. ] | |
[11] |
Erica G, Andrew H, Rick L. Using NDVI and EVI to map spatiotemporal variation in the biomass and quality of forage for migratory elk in the greater Yellowstone ecosystem[J]. Remote Sensing, 2016, 8(5):404-426.
doi: 10.3390/rs8050404 |
[12] | 赖炽敏, 赖日文, 薛娴, 等. 基于植被盖度和高度的不同退化程度高寒草地地上生物量估算[J]. 中国沙漠, 2019, 39(5):127-134. |
[ Lai C M, Lai R W, Xue X, et al. Estimation of aboveground biomass of different degraded alpine grassland based on vegetation coverage and height[J]. Journal of Desert Research, 2019, 39(5):127-134. ] | |
[13] | 孙世泽, 汪传建, 尹小君, 等. 无人机多光谱影像的天然草地生物量估算[J]. 遥感学报, 2018, 22(5):848-856. |
[ Sun S Z, Wang C J, Yin X J, et al. Estimating aboveground biomass of natural grassland based on multispectral images of unmanned aerial vehicles[J]. Journal of Remote Sensing, 2018, 22(5):848-856. ] | |
[14] |
Li G, Wang J L, Wang Y J, et al. Estimation of grassland production in central and eastern Mongolia from 2006 to 2015 via remote sensing[J]. Journal of Resources and Ecology, 2019, 10(6):676-684.
doi: 10.5814/j.issn.1674-764x.2019.06.013 |
[15] | 徐斌, 杨秀春, 陶伟国, 等. 中国草原产草量遥感监测[J]. 生态学报, 2007, 27(2):405-413. |
[ Xu B, Yang X Y, Tao W G, et al. Remote sensing monitoring upon the grass production in China[J]. Acta Ecologica Sinica, 2007, 27(2):405-413. ] | |
[16] |
Yang S X, Feng Q S, Liang T G, et al. Modeling grassland aboveground biomass based on artificial neural network and remote sensing in the Three-river headwaters region[J]. Remote Sensing of Environment, 2018, 204:448-455.
doi: 10.1016/j.rse.2017.10.011 |
[17] | 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4):327-336. |
[ He Q, Li N, Luo W J, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4):327-336. ] | |
[18] |
Xie Y, Sha Z, Yu M, et al. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China[J]. Ecological Modelling, 2009, 220(15):1810-1818.
doi: 10.1016/j.ecolmodel.2009.04.025 |
[19] |
Li B, Wang W, Bai L, et al. Estimation of aboveground vegetation biomass based on Landsat-8 OLI satellite images in the Guanzhong Basin, China[J]. International Journal of Remote Sensing, 2019, 40(10):3927-3947.
doi: 10.1080/01431161.2018.1553323 |
[20] |
Jie W, Xiang M X, Rajen B, et al. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154:189-201.
doi: 10.1016/j.isprsjprs.2019.06.007 |
[21] | 修晓敏, 周淑芳, 陈黔, 等. 基于Google Earth Engine与机器学习的省级尺度零散分布草地生物量估算[J]. 测绘通报, 2019(3):46-52,75. |
[ Xiu X M, Zhou S F, Chen Q, et al. Above-ground biomass estimation of provincial scattered grassland based on Google Earth Engine and machine learning[J]. Bulletin of Surveying and Mapping, 2019(3):46-52,75. ] | |
[22] |
Zeng N, Ren X, He H, et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm[J]. Ecological Indicators, 2019, 102:479-487.
doi: 10.1016/j.ecolind.2019.02.023 |
[23] |
Wang Y, Wu G, Deng L, et al. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm[J]. Scientific Reports, 2017, 7(1):940-943.
doi: 10.1038/s41598-017-01078-8 |
[24] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45:5-32.
doi: 10.1023/A:1010933404324 |
[25] | NY/T 1233-2006,草原资源与生态监测技术规程[S]. |
[NY/T 1233-2006, Technical rules for monitoring of rangeland resources and ecology[S]. ] | |
[26] | 杨秀春, 徐斌, 朱晓华, 等. 北方农牧交错带草原产草量遥感监测模型[J]. 地理研究, 2007, 26(2):213-221,425. |
[ Yang X C, Xu B, Zhu X H, et al. Models of grass production based on remote sensing monitoring in northern agro grazing ecotone[J]. Geographical Research, 2007, 26(2):213-221,425. ] | |
[27] | 中国资源卫星应用中心. 高分一号WFV数据[DB/OL]. http://218.247.138.119:7777/DSSPlatform/index.html. |
[China center for resources satellite data and application. GF-1 WFV dataset[DB/OL]. http://218.247.138.119:7777/DSSPlatform/index.html.] | |
[28] | Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with ERTS[J]. Nasa Special Publication, 1974, 1:309-317. |
[29] | Jodi R, Norris, Jessica J. Walker solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States[J]. Remote Sensing of Environment, 2020, 249,112013. |
[30] |
Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666.
doi: 10.2307/1936256 |
[31] |
Thomas K, Georgios O, Jan G, et al. Relationship between MODIS EVI and LAI across time and space[J]. Geocarto International, 2020, 35(13):1385-1399.
doi: 10.1080/10106049.2019.1573928 |
[32] |
Liu H Q, Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):457-465.
doi: 10.1109/TGRS.36 |
[33] |
Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309.
doi: 10.1016/0034-4257(88)90106-X |
[34] |
Steven M D. The sensitivity of the OSAVI vegetation index to observational parameters[J]. Remote Sensing of Environment, 1998, 63(1):49-60.
doi: 10.1016/S0034-4257(97)00114-4 |
[35] | 李欣海. 随机森林是特点鲜明的模型,不是万能的模型[J]. 应用昆虫学报, 2019, 56(1):170-179. |
[ Li X H. Random forest is a specific algorithm, not omnipotent for all datasets[J]. Chinese Journal of Applied Entomology, 2019, 56(1):170-179. ] | |
[36] |
Fabian E F, Javiera P, Lucas R, et al. Using Sentinel-2 and canopy height models to derive a landscape-level biomass map covering multiple vegetation types[J]. International Journal of Applied Earth Observations and Geoinformation, 2021, 94,102236.
doi: 10.1016/j.jag.2020.102236 |
[37] | 姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014, 44(1):137-141. |
[ Yao D J, Yang J, Zhan X J. Feature selection algorithm based on random forest[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(1):137-141. ] | |
[38] | 孟杰, 李春林. 基于随机森林模型的分类数据缺失值插补[J]. 统计与信息论坛, 2014, 29(9):86-90. |
[ Meng J, Li C L. Missing data imputation for categorical data based on random forest model[J]. Statistics & Information Forum, 2014, 29(9):86-90. ] | |
[39] | 张雷, 王琳琳, 张旭东, 等. 随机森林算法基本思想及其在生态学中的应用—以云南松分布模拟为例[J]. 生态学报, 2014, 34(3):650-659. |
[ Zhang L, Wang L L, Zhang X D, et al. The basic principle of random forest and its applications in ecology: A case study of Pinus yunnanensis[J]. Acta Ecologica Sinica, 2014, 34(3):650-659. ] | |
[40] | Gao X X, Dong S K, Li S, et al. Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracy of estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau[J]. Ecological Indicators, 2020, 112:106-114. |
[41] | 王建步, 张杰, 马毅, 等. 基于高分一号WFV卫星影像的黄河口湿地草本植被生物量估算模型研究[J]. 激光生物学报, 2014, 23(6):604-608. |
[ Wang J B, Zhang J, Ma Y, et al. Study on the above ground vegetation biomass estimation model based on GF-1 WFV satellite image in the Yellow River estuary wetland[J]. Acta Laser Biology Sinica, 2014, 23(6):604-608. ] | |
[42] | 方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库[A]//王庚辰, 温玉璞.温室气体浓度和排放监测及相关过程[C].北京:中国环境科学出版社, 1996. 81-149. |
[ Fang J Y, Liu G H, Xu S L. Carbon pool of terrestrial ecosystem in China[A]//Wang G C, Wen Y P, editor. Greenhouse gas concentration and emission monitoring and related processes[C]. Beijing: China Environmental Science Press, 1996.81-149. ] |
[1] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[2] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[3] | 林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953-966. |
[4] | 柯日宏, 吴升, 柯玮文. 一种识别共享单车潮汐点的时空模型和基于KNN-LightGBM的租还需求预测方法[J]. 地球信息科学学报, 2023, 25(4): 741-753. |
[5] | 谭德明, 饶佳艺. 深圳市都市型滨水空间活力影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 809-822. |
[6] | 李心雨, 闫浩文, 王卓, 王炳瑄. 街景图像与机器学习相结合的道路环境安全感知评价与影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 852-865. |
[7] | 吴子豪, 刘耀林, 冯向阳, 陈奕云, 闫庆武. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573-587. |
[8] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[9] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[10] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[11] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[12] | 刘天禹, 陈晓琳, 李强, 陈晋. 向心扩张指数构建及其在郑州都市圈城镇空间扩张中的应用[J]. 地球信息科学学报, 2022, 24(9): 1771-1784. |
[13] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[14] | 聂祥琴, 陈瀚阅, 牛铮, 张黎明, 刘炜, 邢世和, 范协裕, 李家国. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. |
[15] | 高位, 涂伟, 李明晓, 方碧宸, 陈栋胜, 黄正东, 贺彪. 基于影响因子动态更新的都市圈国土-人口协同模拟[J]. 地球信息科学学报, 2022, 24(8): 1502-1511. |
|