[1] 周成虎. 点模式分析[J].地理科学进展,1989,8(2):8-11. [Zhou C H.Analysis of point patterns[J]. Progress in Geography, 1989,8(2):8-11.] [2] Yamada I, Rogerson P.An empirical comparison of edge effect correction methods applied to K-function analysis[J]. Geographical Analysis, 2003,35(2):97-109. [3] Ripley B D.Modelling spatial patterns[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977,39(2):172-212. [4] 李智,李卫红.点模式条件下的犯罪嫌疑人时空同现模式挖掘与分析[J].地球信息科学学报,2018,20(6):827-836. [Li Z, Li W H.Mining and analyzing spatiotemporal co-occurrence patterns among criminal suspects under point pattern[J]. Journal of Geo- information Science, 2018,20(6):827-836.] [5] 曾璇,崔海山,刘毅华.基于网络空间点模式的餐饮店空间格局分析[J].地球信息科学学报,2018,20(6):837-843. [Zeng X, Cui H S, Liu Y H.Analysis on spatial distribution characteristics of restaurant based on network spatial point model[J]. Journal of Geo- information Science, 2018,20(6):837-843.] [6] 李清泉,李德仁.大数据GIS[J].武汉大学学报·信息科学版,2014,39(6):641-644. [Li Q Q, Li D R.Big data GIS[J]. Geomatics and Information Science ofWuhan University, 2014,39(6):641-644.] [7] 崔邹森. 基于交叉Ripley's K函数的点模式Web可视化分析系统设计与实现[D].武汉:武汉大学,2020. [Cui Z S.Design and implementation of Web-based point pattern visual analytics system upon cross Ripley's K function [D].Wuhan:Wuhan University, 2020.] [8] Tang W W, Feng W P, Jia M J.Massively parallel spatial point pattern analysis: Ripley's K function accelerated using graphics processing units[J]. International Journal of Geographical Information Science, 2015,29(3):412-439. [9] Zhang G M, Huang Q Y, Zhu A, et al.Enabling point pattern analysis on spatial big data using cloud computing: Optimizing and accelerating Ripley's K function[J]. International Journal of Geographical Information Science, 2016,30(11):2230-2252. [10] 王源. 面向海量点模式分析的时空Ripley's K函数优化与加速[D].武汉:武汉大学,2019. [Wang Y.Optimization and acceleration of spatiotemporal Ripley's K function for enabling massive point pattern analysis[D]. Wuhan: Wuhan University, 2019.] [11] 向隆刚,王德浩,龚健雅.大规模轨迹数据的Geohash 编码组织及高效范围查询[J].武汉大学学报·信息科学版, 2017,42(1):21-27. [Xiang L G, Wang D H, Gong J Y.Organization and efficient range query of large trajectory data based on geohash[J]. Geomatics and Information Science ofWuhan University, 2017,42(1):21-27.] [12] Wang Y, Gui Z, Wu H, et al.Optimizing and accelerating space- time Ripley's K function based on Apache Spark for distributed spatiotemporal point pattern analysis[J]. Future Generation Computer Systems, 2020,105:96-118. [13] Gui Z, Wang Y, Cui Z, et al.Developing apache spark based Ripley's K functions for accelerating spatiotemporal point pattern analysis[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020,43:545-552. [14] 左尧,王少华,钟耳顺,等.高性能GIS研究进展及评述[J].地球信息科学学报,2017,19(4):437-446. [Zuo Y, Wang S H, Zhong E S, et al.Research progress and review of high-performance GIS[J]. Journal of Geo-information Science, 2017,19(4):437-446.] [15] 邱强,秦承志,朱效民,等.全空间下并行矢量空间分析研究综述与展望[J].地球信息科学学报,2017,19(9):1217-1227. [Qiu Q A, Qin C Z, Zhu X M, et al.Overview and prospect on spatial analysis of parallel vectors in pan-spatial concept[J]. Journal of Geo-information Science, 2017, 19(9):1217-1227.] [16] Whitman R T, Park M B, Marsh B G, et al.Spatio-temporal join on Apache Spark[C]. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2017:1-10. [17] 高旭,桂志鹏,隆玺,等. KDSG-DBSCAN:一种基于K-D Tree 和Spark GraphX 的高性能DBSCAN 算法[J].地理与地理信息科学,2017,33(6):1-7,127. [Gao X, Gui Z P, Long X, et al.KDSG-DBSCAN: A high performance DBSCAN algorithm based on K-D tree and spark GraphX[J]. Geography and Geo-information Science, 2017,33(6): 1-7,127.] [18] Gui Z, Peng D, Wu H, et al.MSGC: Multi-scale grid clustering by fusing analytical granularity and visual cognition for detecting hierarchical spatial patterns[J]. Future Generation Computer Systems, 2020,112:1038-1056. [19] Vo H, Aji A, Wang F S.SATO: A spatial data partitioning framework for scalable query processing[C]. GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, 2014. [20] 李绍俊,钟耳顺,王少华,等.基于状态转移矩阵的Hilbert 码快速生成算法[J].地球信息科学学报,2014,16(6):846-851. [Li J S, Zhong E S, Wang S H, et al.An algorithm for Hilbert ordering code based on state-transition matrix[J]. Journal of Geo-information Science, 2014,16(6):846-851.] [21] 崔登吉. 空间分布模式驱动的空间数据组织与索引研究 [D].南京:南京师范大学,2016. [Cui D J.Spatial data organization and indexing research driven by spatial distri-bution pattern[D]. Nanjing: Nanjing Normal University, 2016.] [22] Liu Y Y, Cho W K T. A spatially explicit evolutionary algorithm for the spatial partitioning problem[J]. Applied Soft Computing, 2020,90:106-129. [23] 向隆刚,高萌,王德浩,等. Geohash-Trees:一种用于组织大规模轨迹的自适应索引[J].武汉大学学报·信息科学版,2019,44(3):436-442. [Xiang L G, Gao M, Wang D H, et al.Geohash-trees: An adaptive index which can organize large- scale trajectories[J]. Geomatics and Information Science ofWuhan University, 2019,44(3):436-442.] [24] Zhang L, Ren L, Hao X, et al.Query method for nearest region of spatial line segment based on Hilbert curve grid[J]. International Journal of Innovative Computing Information and Control, 2019,15(4):1287-1307. [25] Yu J, Zhang Z S, Sarwat M.Spatial data management in apache spark: The GeoSpark perspective and beyond[J]. GeoInformatica, 2019,23(1):37-78. [26] Li F, Gui Z, Wu H, et al.Big enterprise registration data imputation: Supporting spatiotemporal analysis of industries in China[J]. Computers, Environment and Urban Systems, 2018,70:9-23. [27] 湛东升,张文忠,党云晓,等.北京市公共服务设施空间集聚特征分析[J].经济地理,2018,38(12):76-82. [Zhan D S, Zhang W Z, Dang Y X, et al.Spatial clustering analysis of public service facilities in Beijing[J]. Economic Geography, 2018,38(12):76-82.] [28] Eldawy A, Alarabi L, Mokbel M F.Spatial partitioning techniques in SpatialHadoop[J]. Proceedings of the VLDB Endowment, 2015,8(12):1602-1605. [29] Kui Y, Chang Y Q.Prediction and optimization of sharing bikes queuing model in grid of Geohash coding[J]. Measurement and Control, 2020,53(7):1250-1266. [30] Google. S2 Geometry[EB/OL]. http://s2geometry.io/, 2019-12-18. [31] Li R, He H, Wang R, et al.JUST: JD urban spatio-temporal data engine[C]. 2020 IEEE 36th International Conference on Data Engineering, 2020:1558-1569. |