Journal of Geo-information Science ›› 2019, Vol. 21 ›› Issue (6): 799-813.doi: 10.12082/dqxxkx.2019.190014
Ying FANG1,2(), Lianfa LI1,2,*(
)
Received:
2019-01-19
Revised:
2019-03-04
Online:
2019-06-15
Published:
2019-06-15
Contact:
Lianfa LI
E-mail:fangying@lreis.ac.cn;lilf@lreis.ac.cn
Supported by:
Ying FANG, Lianfa LI. Spatiotemporal Estimation of High-Accuracy and High-Resolution Meteorological Parameters based on Machine Learning[J].Journal of Geo-information Science, 2019, 21(6): 799-813.DOI:10.12082/dqxxkx.2019.190014
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Basic information of the three meteorological data"
记录数/个 | 最小值 | 最大值 | 平均值 | 中值 | 标准差 | |
---|---|---|---|---|---|---|
气温/℃ | 294 357 | -37.70 | 38.20 | 12.97 | 14.90 | 11.45 |
高程/m | 1.80 | 4612.20 | 770.00 | 361.90 | 953.04 | |
相对湿度/% | 290 925 | 4.00 | 100.00 | 67.21 | 71.00 | 19.57 |
研究所得气温/℃ | -18.12 | 38.41 | 12.89 | 13.28 | 10.94 | |
GEOS-FP臭氧浓度/DU | 219.40 | 485.40 | 318.30 | 311.80 | 38.40 | |
最近邻相对湿度/) | 4.00 | 100.00 | 67.28 | 71.00 | 19.61 | |
风速/(m/s) | 255 209 | 0.00 | 23.20 | 2.06 | 1.80 | 1.27 |
GLDAS风速/(m/s) | 0.32 | 19.22 | 2.80 | 2.40 | 1.58 |
Tab. 4
Performance of each modelwithdifferent covariables"
协变量组合 | GAM结果 | 残差自编码器结果 | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |||
气温 | 经纬度+高程+DOY | 0.87 | 4.05 | 3.10 | 0.95 | 2.47 | 1.87 | |
经纬度+高程+DOY+月份 | 0.87 | 4.06 | 3.10 | 0.96 | 2.26 | 1.71 | ||
相对湿度 | 经纬度+高程+DOY | 0.51 | 13.77 | 10.96 | 0.72 | 10.37 | 8.05 | |
经纬度+高程+DOY+最近邻值 | 0.80 | 8.71 | 6.49 | 0.86 | 7.41 | 5.58 | ||
经纬度+高程+DOY+气温 | 0.51 | 13.67 | 10.87 | 0.75 | 9.78 | 7.58 | ||
经纬度+高程+DOY+臭氧浓度 | 0.52 | 13.59 | 10.79 | 0.75 | 9.74 | 7.55 | ||
经纬度+高程+DOY+气温+臭氧浓度 | 0.52 | 13.64 | 10.81 | 0.77 | 9.47 | 7.29 | ||
经纬度+高程+DOY+气温+臭氧浓度+月份 | 0.52 | 13.61 | 10.80 | 0.85 | 7.66 | 5.86 | ||
风速 | 经纬度+高程+DOY | 0.22 | 11.27 | 7.81 | 0.44 | 9.55 | 6.60 | |
经纬度+高程+DOY+GEOS-FP风速 | 0.46 | 9.35 | 6.54 | 0.65 | 7.59 | 5.21 | ||
经纬度+高程+DOY+GEOS-FP风速+月份 | 0.45 | 9.39 | 6.55 | 0.66 | 7.49 | 5.18 |
[1] | Shi Y, Ho H C, Xu Y, et al.Improving satellite aerosol optical Depth-PM2.5 correlations using land use regression with microscale geographic predictors in a high-density urban context[J]. Atmospheric Environment, 2018,190:23-34. |
[2] | Gao M, Yin L, Ning J.Artificial neural network model for ozone concentration estimation and Monte Carlo analysis[J]. Atmospheric Environment, 2018,184:129-139. |
[3] | Li L, Lurmann F, Habre R, et al.Constrained mixed-effect models with ensemble learning for prediction of nitrogen oxides concentrations at high spatiotemporal resolution[J]. Environmental Science & Technology, 2017,51(17):9920-9929. |
[4] |
王小燕,赵晓宇,陈恢富,等.江汉平原小麦孕穗期空气相对湿度升高的产量效应[J].中国农业科学,2014,47(19):3769-3779.
doi: 10.3864/j.issn.0578-1752.2014.19.005 |
[ Wang X Y, Zhao X Y, Chen H F, et al.Characteristics of air moisture and the effects of high air moisture at booting stage on grain yield of wheat in Jianghan plain[J]. Scientia Agricultura Sinica, 2014,47(19):3769-3779. ]
doi: 10.3864/j.issn.0578-1752.2014.19.005 |
|
[5] | 孙丽娜,孙瑞红,仇贵生,等.相对湿度对苹小卷叶蛾实验种群的影响[J].应用生态学报, 2014,25(12):3587-3592. |
[ Sun L N, Sun R H, Qiu G S, et al.Influence of relative humidity on the Adoxophyes orana experimental population[J]. Chinese Journal of Applied Ecology, 2014,25(12):3587-3592. ] | |
[6] |
赵琴,潘静,曹兵,等.气温升高与干旱胁迫对宁夏枸杞光合作用的影响[J].生态学报,2015,35(18):6016-6022.
doi: 10.5846/stxb201401090073 |
[ Zhao Q, Pan J, Cao B, et al. Effects of elevated temperature and drought stress on photosynthesis of Lycium barbarum[J]. Acta Ecologica Sinica, 2015,35(18):6016-6022. ]
doi: 10.5846/stxb201401090073 |
|
[7] | Bo Y C, Song C, Wang J, et al.Using an autologistic regression model to identify spatial risk factors and spatial risk patterns of hand, foot and mouth disease (HFMD) in Mainland China[J]. BMC Public Health, 2014,14(1):358. |
[8] | 谢今范,刘玉英,王玉昆,等.东北地区风能资源空间分布特征与模拟[J].地理科学,2014,34(12):1497-1503. |
[ Xie J F, Liu Y Y, Wang Y K, et al.Spatial distribution characteristics of wind resource and its simulation in northeast China[J]. Scientia Geographica Scinica, 2014,34(12):1497-1503. ] | |
[9] |
任永建,刘敏,袁业畅,等.湖北省风能资源的高分辨率数值模拟试验[J].自然资源学报,2012,27(6):1035-1043.
doi: 10.11849/zrzyxb.2012.06.013 |
[ Ren Y J, Liu M, Yuan Y C, et al.The high resolution numerical simulation of wind energy resource in Hubei Province[J]. Journal of Natural Resources, 2012,26(6):1035-1043. ]
doi: 10.11849/zrzyxb.2012.06.013 |
|
[10] | 于洋,卫伟,陈利顶,等.黄土高原年均降水量空间插值及其方法比较[J].应用生态学报,2015,26(4):999-1006. |
[ Yu Y, Wei W, Chen L D, et al. Comparison on the methods for spatial interpolation of the annual average precipitation in the Loess Plateau region[J]. Chinese Journal of Applied Ecology, 2015,26(4):999-1006. ] | |
[11] | 王国泰,张守平,杨清伟,等.基于空间插值方法的重庆降水信息展布[J].南水北调与水利科技,2018,16(3):18-23. |
[ Wang G T, Zhang S P, Yang Q W et al. Precipitation information distribution in Chongqing based on spatial interpolation method[J]. South-to-North Water Transfers and Water Science & Technology, 2018,16(3):18-23. ] | |
[12] | 林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56. |
[ Lin Z H, Mo X G, Li H X, et al.Comparison of three spatial interpolation methods for climate variables in China[J]. Acta Geographica Sinica, 2002,57(1):47-56. ] | |
[13] | 张仁平,张云玲,郭靖,等.新疆地区降水分布的空间插值方法比较[J].草业科学,2018,35(3):521-529. |
[ Zhang R P, Zhang Y L, Guo J, et al.Comparison of spatial interpolation methods for precipitation distribution in Xinjiang region[J]. Pratacultural Science, 2018,35(3):521-529. ] | |
[14] | 姜晓剑,刘小军,黄芬,等.逐日气象要素空间插值方法的比较[J].应用生态学报,2010,21(3):624-630. |
[ Jiang X J, Liu X J, Huang F, et al.Comparison of spatial interpolation methods for daily meteorological elements[J]. China Journal of Applied Ecology, 2010,21(3):624-630. ] | |
[15] |
陈思宁,郭军.不同空间插值方法在区域气温序列中的应用评估:以东北地区为例[J].中国农业气象,2015,36(2):234-241.
doi: 10.3969/j.issn.1000-6362.2015.02.015 |
[ Chen S N, Guo J.Evaluation of different spatial interpolation methods in regional temperature sequence: A case study in northeast China[J]. China Journal of Agrometeorology, 2015,36(2):234-241. ]
doi: 10.3969/j.issn.1000-6362.2015.02.015 |
|
[16] |
彭彬,周艳莲,高苹,等.气温插值中不同空间插值方法的适用性分析——以江苏省为例[J].地球信息科学学报,2011,13(4):539-548.
doi: 10.3724/SP.J.1047.2011.00539 |
[ Peng B, Zhou Y L, Gao P, et al.Suitability assessment of different interpolation methods in the gridding process of station collected air temperature: A case study in Jiangsu Province, China[J]. Journal of Geo-information Science, 2011,13(4):539-548. ]
doi: 10.3724/SP.J.1047.2011.00539 |
|
[17] | 李军龙,张剑,张丛,等.气象要素空间插值方法的比较分析[J].草业科学,2006(8):6-11. |
[ Li J L, Zhang J, Zhang C, et al.Analyze and compare the spatial interpolation methods for climate factor[J]. Pratacultural Science, 2006(8):6-11. ] | |
[18] | 李伟,李庆祥,江志红.用Kriging方法对中国历史气温数据插值可行性讨论[J].南京气象学院学报,2007(2):246-252. |
[ Li W, Li Q X, Jiang Z H.Discussion on feasibility of gridding the historic temperature data in China with kriging method[J]. Journal of Nanjing Institute of Meteorology, 2007(2):246-252. ] | |
[19] | Xu C D, Wang J F, Li Q.A new method for temperature spatial interpolation based on sparse historical stations[J]. Journal of Climate, 2017,31(5):1757-1770. |
[20] | Wang J F, Xu C, Hu M, et al.Global land surface air temperature dynamics since 1880[J]. International Journal of Climatology, 2018,381:E466-E474. |
[21] | Wang J F, Xu C D, Hu M G, et al.A new estimate of the China temperature anomaly series and uncertainty assessment in 1900-2006[J]. Journal of Geophysical Research: Atmospheres, 2014,119(1):1-9. |
[22] | 解恒燕,张深远,侯善策,等.降水量空间插值方法在小样本区域的比较研究[J].水土保持研究,2018,25(3):117-121. |
[ Xie H Y, Zhang S Y, Hou S C, et al.Comparison research on rainfall interpolation methods for small sample areas[J]. Research of Soil and Water Conservation, 2018,25(3):1-9. ] | |
[23] | 马秀霞,黄领梅,沈冰.陕西省月平均气温空间插值方法研究[J].水资源与水工程学报,2017,28(5):100-105. |
[ Ma X X, Huang L M, Shen B Study on spatial interpolation method of monthly mean temperature in Shanxi Province[J]. Journal of Water Resource & Water Engineering, 2017,28(5):100-105. ] | |
[24] | 沈红,刘文兆,张勋昌.黄土高原气象要素栅格化方法的研究[J].西北农林科技大学学报(自然科学版),2010,38(4):99-106. |
[ Shen H, Liu W Z, Zhang X C.Studying the methods for rasterizing meteorological variables in the Loess Plateau[J]. Journal of Northwest A&F University(Nat. Sci. Ed.), 2010,38(4):99-106. ] | |
[25] |
李月臣,何志明,刘春霞.基于站点观测数据的气温空间化方法评述[J].地理科学进展,2014,33(8):1019-1028.
doi: 10.11820/dlkxjz.2014.08.002 |
[ Li Y C, He Z M, Liu C X.Review on spatial interpolation methods of temperature data from meteorological stations[J]. Progress in Geography, 2014,33(8):1019-1028. ]
doi: 10.11820/dlkxjz.2014.08.002 |
|
[26] |
周婷婷,陈文惠.基于MODIS数据和气象观测数据的气温空间插值方法比较[J].地理科学进展,2011,30(9):1143-1151.
doi: 10.11820/dlkxjz.2011.09.009 |
[ Zhou T T, Chen W H.Comparation of the temperature spatial interpolation methods based on MODIS data and meteorological observation data[J]. Progress in Geography, 2011,30(9):1143-1151. ]
doi: 10.11820/dlkxjz.2011.09.009 |
|
[27] | 石志华,刘梦云,常庆瑞,等.基于优化参数的陕西省气温、降水栅格化方法分析[J].自然资源学报,2015,30(7):1141-1152. |
[ Shi Z H, Liu M Y, Chang Q R, et al.Comparison of temperature and precipitation rasterization methods based on optimized parameters in Shanxi Province[J]. Journal of Natural Resources, 2015,30(7):1141-1152. ] | |
[28] |
姜燕敏,吴昊旻. 20个CMIP5模式对中亚地区年平均气温模拟能力评估[J].气候变化研究进展,2013,9(2):110-116.
doi: 10.3969/j.issn.1673-1719.2013.02.005 |
[ Jiang Y M, Wu H M.Simulation capabilities of 20 CMIP5 methods for annual mean air temperatures in central Asia[J]. Progress Inquisitions de Mutatione Climatis, 2013,9(2):110-116. ]
doi: 10.3969/j.issn.1673-1719.2013.02.005 |
|
[29] | Lazzus J A.Estimation of surface soil temperature based on neural network modeling[J]. Italian Journal of Agrometeorology-rivista Italiana Di Agrometeorologia, 2014,19(2):5-12. |
[30] | Szymanowski M, Kryza M, Spallek W.Regression-based air temperature spatial prediction models: An example from Poland[J]. Meteorologische Zeitschrift, 2013,22(5):577-585. |
[31] | Hjort J, Suomi J, Kayhko J.Spatial prediction of urban-rural temperatures using statistical methods[J]. Theoretical and Applied Climatology, 2011,106(1-2):139-152. |
[32] | Kou X, Jiang L, Bo Y, et al.Estimation of land surface temperature through blending MODIS and AMSR-E data with the Bayesian Maximum Entropy method[J]. Remote Sensing, 2016,8(2):105. |
[33] | 蒋冲,王飞,刘焱序,等.秦岭南北风速时空变化及突变特征分析[J].地理科学,2013,33(2):244-250. |
[ Jiang C, Wang F, Liu Y X, et al.Spatial-temporal variation and mutation of wind speed in the northern and southern regions of the Qinling Mountains[J]. Scientia Geographica Sinica, 2013,33(2):244-250. ] | |
[34] | 赵伟,高博,刘明,等.气象因素对香港地区臭氧污染的影响[J].环境科学,2019,40(1):55-66. |
[ Zhao W, Gao B, L Q, et al. Impact of meteorological factors on the ozone pollution in Hong Kong[J]. Environmental Science, 2019,40(1):55-66. ] | |
[35] | Li L, Y F, J W, et al. Autoencoder based residual deep networks for robust regression prediction and spatiotemporal estimation[J].2018, preprint arXiv:1812.11262. |
[36] | Wang J F, Zhang T, Fu B.A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016,67:250-256. |
[37] | 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134. |
[ Wang J F, Xu C D.Geodector: principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134. ] | |
[38] | Wang J F, Li X H, Christakos G, et al.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-127. |
[1] | LIU Mingjie, XU Zhuokui, GAO Yunbing, YANG Jing, PAN Yuchun, GAO Bingbo, ZHOU Yanbing, ZHOU Wanpeng, WANG Ling. Estimating Soil Organic Matter based on Machine Learning Under Sparse Sample [J]. Journal of Geo-information Science, 2020, 22(9): 1799-1813. |
[2] | CHEN Ang, YANG Xiuchun, XU Bin, JIN Yunxiang, ZHANG Wenbo, GUO Jian, XING Xiaoyu, YANG Dong. Research on Recognition Methods of Elm Sparse Forest based on Object-based Image Analysis and Deep Learning [J]. Journal of Geo-information Science, 2020, 22(9): 1897-1909. |
[3] | LIU Xin, ZHAO Ning, GUO Jinyun, GUO Bin. Prediction of Monthly Precipitation over the Tibetan Plateau based on LSTM Neural Network [J]. Journal of Geo-information Science, 2020, 22(8): 1617-1629. |
[4] | GUO Feng, MAO Zhengyuan, ZOU Weibin, WENG Qian. A Method for Building Extraction by Fusing Feature Information from LiDAR Data and High-Resolution Imagery [J]. Journal of Geo-information Science, 2020, 22(8): 1654-1665. |
[5] | LI Wan, NIU Lu, CHEN Hong, WU Hua. Robust Downscaling Method of Land Surface Temperature by Using Random Forest Algorithm [J]. Journal of Geo-information Science, 2020, 22(8): 1666-1678. |
[6] | MAO Yaping, FANG Shifeng. Research of Reference Evapotranspiration's Simulation based on Machine Learning [J]. Journal of Geo-information Science, 2020, 22(8): 1692-1701. |
[7] | XU Hongtao, CHEN Chunbo, ZHENG Hongwei, LUO Geping, YANG Liao, WANG Weisheng, WU Shixin. Correlation Analysis and Adaptive Genetic Algorithm based Feature Subset and Model Parameter Optimization in Salinization Monitoring [J]. Journal of Geo-information Science, 2020, 22(7): 1497-1509. |
[8] | CUI Cheng, REN Hongyan, ZHAO Lu, ZHUANG Dafang. Street Space Quality Evaluation in Yuexiu District of Guangzhou City based on Multi-feature Fusion of Street View Imagery [J]. Journal of Geo-information Science, 2020, 22(6): 1330-1338. |
[9] | WU Zhifeng, LUO Jiancheng, SUN Yingwei, WU Tianjun, CAO Zheng, LIU Wei, YANG Yingpin, WANG Lingyu. Research on Precision Agricultural based on the Spatial-temporal Remote Sensing Collaboration [J]. Journal of Geo-information Science, 2020, 22(4): 731-742. |
[10] | GUO Yunkai, ZHANG Xiaojiong, XU Min, LIU Yuling, QIAN Jia, ZHANG Qiong. Estimation Model of Equivalent Water Thickness in the Road Area [J]. Journal of Geo-information Science, 2020, 22(2): 308-315. |
[11] | LI Wenliang, WANG Chisheng, ZHU Wu. Error Spatial Distribution Characteristics of TanDEM-X 90 m DEM over China [J]. Journal of Geo-information Science, 2020, 22(12): 2277-2288. |
[12] | LI Yu, ZHANG Liming, ZHANG Xingguo, WANG Hao, ZHANG Xingang. Forest Fire Risk Rapid Warning Model based on Meteorological Monitoring Network [J]. Journal of Geo-information Science, 2020, 22(12): 2317-2325. |
[13] | YANG Dan, ZHOU Yanan, YANG Xianzeng, GAO Lijing, FENG Li. Vegetation Mapping in Taibai Mountain Area Supported by LSTM with Time Series Sentinel-1A Data [J]. Journal of Geo-information Science, 2020, 22(12): 2445-2455. |
[14] | MAO Wenshan, ZHAO Hongli, SUN Fengjiao, JIANG Yunzhong, JIANG Qian, ZHU Yanru. Personalized Recommendation Method of Thematic Map Products based on Item2Vec with Negative Sampling Optimization [J]. Journal of Geo-information Science, 2020, 22(11): 2128-2139. |
[15] | GAO Liang, DU Xin, LI Qiangzi, WANG Hongyan, ZHANG Yuan, WANG Siyuan. A Near-surface Air Temperature Spatialization Method Integrating Landuse and Soil Moisture Products [J]. Journal of Geo-information Science, 2020, 22(10): 2023-2037. |
|