Journal of Geo-information Science ›› 2020, Vol. 22 ›› Issue (8): 1743-1751.doi: 10.12082/dqxxkx.2020.190379
Previous Articles Next Articles
Aynigar· yalkun1,2(), ALI Mamtimin2, LIU Suhong1, YANG Fan3, HE Qing3, LIU Yongqiang1,2,*(
)
Received:
2019-07-16
Revised:
2020-02-02
Online:
2020-08-25
Published:
2020-10-25
Contact:
LIU Yongqiang
E-mail:15899104482@163.com;lyqxju@163.com
Supported by:
Aynigar· yalkun, ALI Mamtimin, LIU Suhong, YANG Fan, HE Qing, LIU Yongqiang. Remote Sensing Estimation of Surface Broadband Emissivity over the Deserts in Xinjiang[J].Journal of Geo-information Science, 2020, 22(8): 1743-1751.DOI:10.12082/dqxxkx.2020.190379
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
In-situ sites and time"
观测点 | 经纬度/(N,E) | 高程/m | 观测时间 |
---|---|---|---|
1 | 37°54'13",83°01'44" | 1252 | 2013-10-16 12:30-13:06 |
2 | 37°23'17",82°50'25" | 1334 | 2013-10-16 16:20-16:50 |
3 | 38°11'21",83°08'20" | 1182 | 2013-10-16 18:00-18:20 |
4 | 38°38'52",83°20'43" | 1115 | 2013-10-16 19:15-19:30 |
5 | 38°58'51",83°38'27" | 1088 | 2013-10-17 11:37-12:16 |
6 | 39°23'16",83°51'24" | 1028 | 2013-10-17 17:40-18:10 |
7 | 39°53'45",84°13'25" | 967 | 2013-10-18 11:50-12:10 |
8 | 40°22'26",84°19'32" | 920 | 2013-10-18 13:15-13:30 |
9 | 40°48'04",84°18'02" | 917 | 2013-10-18 15:15-15:40 |
10 | 40°48'04",84°18'02" | 917 | 2013-10-18 15:45-16:00 |
11 | 40°49'13",84°17'31" | 917 | 2013-10-18 16:35-16:50 |
12 | 40°48'37",83°54'44" | 923 | 2013-10-18 17:30-17:50 |
13 | 41°09'24",84°14'52" | 912 | 2013-10-18 19:00-19:20 |
14 | 41°49'23",84°16'03" | 970 | 2013-10-19 11:10-11:20 |
15 | 39°12'10",83°42'44" | 1119 | 2014-09-25 16:14-16:50 |
16 | 39°36'07",84°00'32" | 1056 | 2014-09-25 17:40-18:07 |
17 | 38°26'08",83°13'22" | 1152 | 2014-09-26 12:35-13:02 |
18 | 37°43'06",82°59'00" | 1304 | 2014-09-26 14:20-14:50 |
19 | 37°13'21",82°47'27" | 1349 | 2014-09-26 15:51-16:15 |
20 | 37°42'57",80°28'08" | 1232 | 2014-09-27 12:30-12:52 |
21 | 38°08'03",80°38'20" | 1192 | 2014-09-27 13:45-14:09 |
22 | 38°54'54",80°55'31" | 1117 | 2014-09-27 15:35-16:03 |
23 | 39°24'46",80°57'47" | 1071 | 2014-09-27 17:00-17:20 |
24 | 39°52'22",80°57'52" | 1046 | 2014-09-27 18:19-18:40 |
25 | 40°18'54",81°05'29" | 1006 | 2014-09-27 19:30-19:49 |
[1] |
Cheng J, Liang S, Wang J, et al. A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrareddata[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(3):1588-1597.
doi: 10.1109/TGRS.2009.2029852 |
[2] |
Jacob F, Petitcolin F, Schmugge T, et al. Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors[J]. Remote Sensing of Environment, 2004,90(2):137-152.
doi: 10.1016/j.rse.2003.11.015 |
[3] |
Jin M L, Liang S L. An improved land surface emissivity parameter for land surface models using global remote sensing observations[J]. Journal of Climate, 2006,19(12):2867-2881.
doi: 10.1175/JCLI3720.1 |
[4] | Liang S L. Quantitative remote sensing of land surfaces[M]// Quantitative remote sensing of land surfaces. Wiley-Interscience, 2004: 413-415. |
[5] | Liang S, Kustas W, Schaepman-Strub G, et al. Impacts of climate change and land use changes on land surface radiation and energy budgets[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010,3(3):219-224. |
[6] | Péquignot E, Chédin A, Scott N A. Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor[J]. Journal of Applied Meteorology & Climatology, 2008,47(6):1619-1633. |
[7] | Hanan N P, Berry J A, Verma S B, et al. Testing a model of CO2, water and energy exchange in Great Plains tallgrass prairie and wheat ecosystems[J]. Agricultural & Forest Meteorology, 2005,131(3-4):162-179. |
[8] |
Hook S J, Kahle A B. The micro fourier transform interferometer (micro FTIR): A new field spectrometer for acquisition of infrared data of natural surfaces[J]. Remote Sensing of Environment, 1996,56(3):172-181.
doi: 10.1016/0034-4257(95)00231-6 |
[9] |
Korb A R, Dybwad P, Wadsworth W, et al. Portable fourier transform infrared spectroradiometer for field measurements of radiance and emissivity[J]. Applied Optics, 1996,35(10):1679-92.
doi: 10.1364/AO.35.001679 pmid: 21085290 |
[10] | Korb A R, Salisbury J W, D'Aria D M. Thermal-infrared remote sensing and Kirchhoff's law: 2. Field measurements[J]. Journal of Geophysical Research Solid Earth, 1999,104(B7):15339-15350. |
[11] |
Hori M, Aoki T, Tanikawa T, et al. In-situ measured spectral directional emissivity of snow and ice in the 8-14 μm atmospheric window[J]. Remote Sensing of Environment, 2006,99(4):486-502.
doi: 10.1016/j.rse.2005.11.001 |
[12] | 刘永强, 买买提艾力·买买提依明, 霍文, 等. 塔克拉玛干沙漠地表发射率及分布变化特征[J]. 沙漠与绿洲气象, 2014,8(3):1-7. |
[ Liu Y Q, Ali Mamtimin, Huo W, et al. Characteristics of surface emissivity and distribution in the Taklimakan desert[J]. Desert and oasis weather, 2014,8(3):1-7. ] | |
[13] |
Liu Y Q, Mamtimin A, Huo W, et al. Estimation of the land surface emissivity in the hinterland of Taklimakan Desert[J]. Journal of Mountain Science, 2014,11(6):1543-1551.
doi: 10.1007/s11629-014-3090-5 |
[14] |
Sobrino J A, Raissouni N, Li Z L. A Comparative study of land surface emissivity retrieval from NOAA data[J]. Remote Sensing of Environment, 2001,75(2):256-266.
doi: 10.1016/S0034-4257(00)00171-1 |
[15] | Zhou L M, Dickinson R E, et al. A sensitivity study of climate and energy balance simulations with use of satellite‐derived emissivity data over Northern Africa and the Arabian Peninsula[J]. Journal of Geophysical Research Atmospheres, 2003,108(D24):131-8. |
[16] |
Bonan G B. The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model[J]. Journal of Climate, 2002,15(15):3123-3149.
doi: 10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2 |
[17] | Ogawa K, Schmugge T, Rokugawa S. Estimating broadband emissivity of arid regions and its seasonal variations using thermal infrared remote sensing[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008,46(2):334-343. |
[18] | Wang H S, Xiao Q, Li H, et al. Investigating the impact of soil moisture on thermal infrared emissivity using ASTER data[J]. IEEE Geoscience & Remote Sensing Letters, 2015,12(2):294-298. |
[19] |
Wang K C, Wan Z M, Wang P C, et al. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/ /emissivity products[J]. Journal of Geophysical Research, 2005,110:D11109.
doi: 10.1029/2004JD005566 |
[20] |
Tang B H, Wu H, Li C R, et al. Estimation of broadband surface emissivity from narrowband emissivities[J]. Optics Express, 2011,19(1):185-192.
doi: 10.1364/OE.19.000185 pmid: 21263556 |
[21] | Ogawa K, Schmugge T. Mapping surface broadband emissivity of the sahara desert using ASTER and MODIS data[J]. Earth Interactions, 2004,8(7):145-147. |
[22] | 盛光伟, 肖鹏峰, 张学良, 等. 新疆天山及北疆地区积雪反照率差异[J]. 干旱区地理, 2019,42(4):774-781. |
[ Sheng G W, Xiao P F, Zhang X L, et al. Difference of snow albedo between Tianshan Mountain and North Xinjiang[J]. Arid Area Geography, 2019,42(4):774-781. ] | |
[23] | 张志伟, 杨发相, 吴吉龙. 新疆沙漠空间分布格局与类型结构[J]. 干旱区研究, 2014,31(4):763-770. |
[ Zhang Z W, Yang F X, Wu J L. Spatial distribution pattern and type structure of Xinjiang desert[J]. Study on Arid areas, 2014,31(4):763-770. ] | |
[24] | 彭艳梅, 王舒, 肖高翔, 等. 塔克拉玛干沙漠腹地塔中地区大气气溶胶散射系数影响因子[J]. 中国沙漠, 2018,38(2):384-392. |
[ Peng Y M, Wang S, Xiao G X, et al. Impact factors of atmospheric aerosol scattering coefficient in the Tazhong area of the Taklimakan desert[J]. Journal of Desert Research, 2018,38(2):384-392. ] | |
[25] | 彭艳梅, 高磊, 王舒, 等. 塔克拉玛干沙漠腹地气溶胶不同波段散射系数比较[J]. 沙漠与绿洲气象, 2018,12(3):26-32. |
[ Peng Y M, Gao L, Wang S, et al. Comparison of aerosol scattering coefficients of different wavebands in the hinterland of the Taklimakan desert[J]. Desert & Oasis Meteorology, 2018,12(3):26-32. ] | |
[26] | 周成龙, 杨兴华, 钟昕洁, 等. 塔克拉玛干沙漠腹地沙尘天气特征[J]. 干旱区研究, 2017,34(2):324-329. |
[ Zhou C L, Yang X H, Zhong X J, et al. Dust weather in hinterland of the Taklamakan desert[J]. Arid Zone Research, 2017,34(2):324-329. ] | |
[27] | 金莉莉, 李振杰, 何清, 等. 塔克拉玛干沙漠腹地人工绿地中心区域与边缘地带小气候[J]. 中国沙漠, 2017,37(5):986-996. |
[ Jin L L, Li Z J, He Q, et al. Microclimate over the center and edge areas of the artificial shelter forest land in Taklimakan desert[J]. Journal of Desert Research, 2017,37(5):986-996. ] | |
[28] | 李火青, 吴新萍, 买买提艾力·买买提依明, 等. 利用FTIR和MODIS数据估算塔克拉玛干沙漠宽波段地表比辐射率[J]. 光谱学与光谱分析, 2016,36(8):2414-2419. |
[ Li H Q, Wu X P, Ali, Mamtimin, et al. Estimating surface broadband emissivity of the Taklimakan desert with FTIR and MODIS Data[J]. Spectroscopy and Spectral Analysis, 2016,36(8):2414-2419. ] | |
[29] | 蒋超亮, 吴玲, 刘丹, 等. 干旱荒漠区生态环境质量遥感动态监测——以古尔班通古特沙漠为例[J]. 应用生态学报, 2019,30(3):877-883. |
[ Jiang C L, Wu L, Liu D, et al. Dynamic monitoring of ecological environment quality in arid desert area by remote sensing: A case study of Gurbantunggut desert[J]. Journal of Applied Ecology, 2019,30(3):877-833. ] | |
[30] | 张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点[J]. 生态学报, 2001,22(11):1923-1932. |
[ Zhang L Y, Chen C D. On the general characteristics of plant diversity in Gurbantunggut desert[J]. Journal of Ecology, 2001,22(11):1923-1932. ] | |
[31] | 董治宝, 屈建军, 钱广强, 等. 库姆塔格沙漠风沙地貌区划[J]. 中国沙漠, 2011,31(4):805-814. |
[ Dong Z B, Qu J J, Qian G Q, et al. Regionalization of wind-sand geomorphology in Kumtag desert[J]. Desert of China, 2011,-31-(4):805-814. ] | |
[32] | 俄有浩, 苏志珠, 王继和, 等. 库姆塔格沙漠综合科学考察成果初报[J]. 中国沙漠, 2006,26(5):693-697. |
[ E Y H, Su Z Z, Wang W H, et al. A preliminary report on the results of comprehensive scientific investigation in Kumtag desert[J]. Desert of China, 2006,26(5):693-697. ] | |
[33] | 李火青, 吴新萍, 买买提艾力·买买提依明, 等. 基于FTIR和MODIS数据估算新疆沙漠宽波段地表比辐射率[J]. 中国沙漠, 2017,37(3):523-529. |
[ Li H Q, Wu X P, Ali Mamtimin, et al. Estimating the surface broadband emissivity of deserts in Xinjiang base on MODIS and FTIR Data[J]. Journal of Desert Research, 2017,37(3):523-529. ] | |
[34] |
Wan Z M. New refinements and validation of the MODIS land-surface temperature/emissivity products[J]. Remote Sensing of Environment, 2014,140(1):36-45.
doi: 10.1016/j.rse.2013.08.027 |
[35] | Yao Y J, Qin Q M, Zhao S H, et al. Retrieval of soil moisture based on MODIS shortwave infrared spectral feature[J]. Journal of Infrared & Millimeter Waves, 2011,30(1):9-14. |
[36] | Zhou L M, Dickinson R E, Ogawa K, et al. Relations between albedos and emissivities from MODIS and ASTER data over North African desert[J]. Geophysical Research Letters, 2003,30(20):2026. |
[37] |
Cheng J, Liang S L. Estimating global land surface broadband thermal-infrared emissivity using advanced very high-resolution radiometer optical data[J]. International Journal of Digital Earth, 2013,6(sup1):34-49.
doi: 10.1080/17538947.2013.783129 |
[38] | Cheng J, Liang S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product[J]. Journal of Geophysical ResearchAtmospheres, 2014,119(2):614-634. |
[39] | Ren H Z, Liang S L, Yan G J. Empirical algorithms to map global broadband emissivities over vegetated surfaces[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013,51(5):2619-2631. |
[40] | Cheng J, Liang S L, Weng F Z, et al. Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010,3(3):323-336. |
[41] | 梁顺林, 张晓通, 肖志强, 等. 全球陆表特征参量(GLASS)产品:算法、验证与分析[M]. 北京: 高等教育出版社, 2014. |
[ Liang S L, Zhang X T, Xiao Z Q, et al. Global Land Surface Satellite characteristic parameters (GLASS) Products: Algorithm, verification and analysis[M]. Beijng: Higher Education Press, 2014. ] | |
[42] | Wilber A C, Kratz D P, Gupta S K. Surface emissivity maps for use in satellite retrievals of longwave radiation[M]. NASA Langley Technical Report Server, 1999. |
[43] | Wan Z M, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience & Remote Sensing, 1996,34(4):892-905. |
[1] | SHUAI Yanmin, MA Xianwei, QU Ge, SHAO Congying, LIU Tao, LIU Shoumin, HUANG Huabing, GU Lingxiao, LATIPA Tuerhanjiang, LIANG Ji, LI Ling. Cascade Extraction of Impervious Surface Information based on the Signature of Temporal Spectrum [J]. Journal of Geo-information Science, 2021, 23(1): 171-186. |
[2] | WANG Zhihua, YANG Xiaomei, ZHOU Chenghu. Geographic Knowledge Graph for Remote Sensing Big Data [J]. Journal of Geo-information Science, 2021, 23(1): 16-28. |
[3] | WANG Yanjie, WANG Juanle, WEI Haishuo, ALTANSUKH Ochir, DAVAADORJ Davaasuren, SONOMDAGVA Chonokhuu. Study on Estimation Method of Mongolia Grassland Production based on Sparse Samples [J]. Journal of Geo-information Science, 2020, 22(9): 1814-1822. |
[4] | CHEN Hui, LI Qing, WANG Zhongting, MA Pengfei, LI Ying, ZHAO Aimei. Retrieval of Aerosol Optical Depth Using FY3D MERSI2 Data [J]. Journal of Geo-information Science, 2020, 22(9): 1887-1896. |
[5] | CHEN Ruru, HU Zhongmin, LI Shenggong, GUO Qun. Assessment of Normalized Difference Vegetation Index from Different Data Sources in Grassland of Northern China [J]. Journal of Geo-information Science, 2020, 22(9): 1910-1919. |
[6] | PU Dongchuan, WANG Guizhou, ZHANG Zhaoming, NIU Xuefeng, HE Guojin, LONG Tengfei, YIN Ranyu, JIANG Wei, SUN Jiayue. Urban Area Extraction based on Independent Component Analysis and Random Forest Algorithm [J]. Journal of Geo-information Science, 2020, 22(8): 1597-1606. |
[7] | LI Wan, NIU Lu, CHEN Hong, WU Hua. Robust Downscaling Method of Land Surface Temperature by Using Random Forest Algorithm [J]. Journal of Geo-information Science, 2020, 22(8): 1666-1678. |
[8] | WU Mingquan, WANG Biaocai, NIU Zheng, HUANG Wenjiang. Theoretical Framework and Research Progress of Big Earth Data Technology in Projects Construction [J]. Journal of Geo-information Science, 2020, 22(7): 1408-1423. |
[9] | GONG Wei, LI Li, LIU Qinhuo, XIN Xiaozhou, PENG Zhiqing, WU Mingqun, NIU Zheng, TIAN Haifeng. Monitoring and Analyzing Ecosystem Impact on Hydropower Projects by Remote Sensing in the Belt and Road Region [J]. Journal of Geo-information Science, 2020, 22(7): 1424-1436. |
[10] | ZHU Hui, ZHANG Qingling, ZHANG Shan. Spatial and Temporal Characteristics of Socio-Economic Development in Central Asia based on A Series of Nighttime Light Images from 1992 to 2017 [J]. Journal of Geo-information Science, 2020, 22(7): 1449-1462. |
[11] | YE Huping, LIAO Xiaohan, HE Xianqiang, YUE Huanyin. Remote Sensing Monitoring and Variation Analysis of Marine Ecological Environment in Coastal Waters of Sri Lanka [J]. Journal of Geo-information Science, 2020, 22(7): 1463-1475. |
[12] | GAO Wangwang, FENG Jianzhong, BAI Linyan, YANG Jianhua, GUO Leifeng, LI Hualin, CUI Mengrui. Spatiotemporal Dynamics and Tracing of Aerosol over Hainan Island [J]. Journal of Geo-information Science, 2020, 22(7): 1532-1543. |
[13] | WANG Weijia, WANG Wen, YANG Xi, ZHAO Yanyun. Pure Premium Rate-making of Winter Wheat Insurance based on MODIS GPP [J]. Journal of Geo-information Science, 2020, 22(7): 1578-1587. |
[14] | WANG Yongquan, WANG Chisheng, WANG Lehan, SHE Jiani, LI Qingquan. Preliminary Application of Night Light Remote Sensing based on Passenger Aircraft in Hong Kong Economic Activity Zone Changes Identification [J]. Journal of Geo-information Science, 2020, 22(5): 1153-1160. |
[15] | ZHANG Hongyan, ZHOU Chenghu, LV Guonian, WU Zhifeng, LU Feng, WANG Jinfeng, YUE Tianxiang, LUO Jiancheng, GE Yong, QIN Chengzhi. The Connotation and Inheritance of Geo-information Tupu [J]. Journal of Geo-information Science, 2020, 22(4): 653-661. |
|