Journal of Geo-information Science ›› 2020, Vol. 22 ›› Issue (3): 482-493.doi: 10.12082/dqxxkx.2020.190553

Previous Articles     Next Articles

Study on the Relationship between Terrain and Distribution of the Vegetation in Shennongjia Forestry District

ZHANG Xinghang1,2, ZHANG Baiping1,*(), WANG Jing1,2, YAO Yonghui1, YU Fuqin1,2   

  1. 1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-09-27 Revised:2019-11-14 Online:2020-03-25 Published:2020-05-18
  • Contact: ZHANG Baiping
  • Supported by:
    National Science and Technology Basic Resource Investigation Program(2017FY100900)


The Shennongjia Forestry District is one of the areas with the highest biodiversity in China. The complex topography exerts great influence on vegetation distribution in this region. This paper used the maximum entropy model (MaxEnt), digital elevation data, vegetation distribution map, and field-surveyed data, to study how the topographic characteristics affect local typical vegetation distributions at two scales, i.e., vegetation type and population levels. The relationship models between vegetation type and topographic factors, and between plant population and topographic factors were established respectively by quantifying the topographic ranges of vegetation types and plant species. Results show that: (1) the spatial distribution of different vegetation types was affected by different topographic factors. The distribution of coniferous forests was affected by elevation and coefficient of variation in elevation, the distribution of broad-leaved forests was controlled by elevation and aspect, and the distribution of shrubs was controlled by aspect and the slope of aspect. The factors affecting the distribution of grasses were various. (2) The elevation ranges of typical plant species were generally consistent with those of vegetation types. Specifically, 90% of coniferous forests were distributed at elevation between 1600 and 2600 m, and the typical populations of Abies fargesii and Pinus armandii were distributed at elevation of 1700~3200 m. 85% of the broad-leaved forests were distributed within the range of 1000 m to 2000 m in elevation, and the typical populations of Cyclobalanopsis glauca, Carpinus turczaninowii concentrated at elevation between1000 to 2000 m. 95% of shrubs occurred at slope of aspect within 0~40 degrees, and the typical populations of Rhododendron simsii and Rosaceae mainly occurred at slope of aspect less than 40 degrees. The relationship models used for vegetation types and plant species were different. The relationship between vegetation types and topographic factors was fitted using Gauss model. While the relationship between typical species and topographic factors was relatively complex, and the distribution patterns of different species were even different. (3) Vegetation distribution showed a rather weak relationship with typical slope characteristic. This study provides a basic reference for vegetation protection, vegetation restoration, and vegetation management in the Shennongjia region.

Key words: spatial distribution of vegetation, typical plant species, topographic factors, maximum entropy model, spatial analysis, Shennongjia, relationship models, Gaussian distribution