Journal of Geo-information Science ›› 2020, Vol. 22 ›› Issue (6): 1254-1267.doi: 10.12082/dqxxkx.2020.190576
Previous Articles Next Articles
ZHAO Shaoya1,2, YANG Xingdou2, DAI Teqi1,2,*(), ZHANG Chao3
Received:
2019-10-05
Revised:
2019-11-28
Online:
2020-06-25
Published:
2020-08-25
Contact:
DAI Teqi
E-mail:daiteqi@bnu.edu.cn
Supported by:
ZHAO Shaoya, YANG Xingdou, DAI Teqi, ZHANG Chao. Within-Day Variation of the Complexity of Bus Passenger Flow Network based on Smart Card Data[J].Journal of Geo-information Science, 2020, 22(6): 1254-1267.DOI:10.12082/dqxxkx.2020.190576
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Statistics of the passenger flow between grids for each time period on August 13, 2015, Beijing"
时段 | 总量/万人 | 最大值/人 | 最小值/人 | 均值/人 | 方差 |
---|---|---|---|---|---|
5:00—7:00 | 29.02 | 497 | 1 | 6.71 | 14.35 |
7:00—9:00 | 137.15 | 2223 | 1 | 18.99 | 46.01 |
9:00—11:00 | 74.46 | 1272 | 1 | 11.45 | 24.12 |
11:00—13:00 | 47.33 | 870 | 1 | 8.02 | 15.56 |
13:00—15:00 | 41.83 | 612 | 1 | 7.47 | 14.36 |
15:00—17:00 | 51.16 | 773 | 1 | 8.58 | 17.40 |
17:00—19:00 | 100.35 | 1849 | 1 | 14.74 | 34.00 |
19:00—21:00 | 75.09 | 1460 | 1 | 11.70 | 27.70 |
21:00—23:00 | 32.03 | 547 | 1 | 7.25 | 15.02 |
Tab. 3
Main coefficients of distance decay models of the traffic flow for each period on August 13, 2015, Beijing"
客流时段 | a | b | R2 | F | F(α=0.01)≈13.75 |
---|---|---|---|---|---|
5:00—7:00 | 2.33 | 0.21 | 0.98 | 376.07 | 通过检验 |
7:00—9:00 | 2.27 | 0.21 | 0.99 | 826.48 | 通过检验 |
9:00—11:00 | 2.07 | 0.21 | 1.00 | 1717.13 | 通过检验 |
11:00—13:00 | 1.85 | 0.20 | 1.00 | 4813.44 | 通过检验 |
13:00—15:00 | 1.87 | 0.20 | 1.00 | 2630.49 | 通过检验 |
15:00—17:00 | 1.97 | 0.210 | 1.00 | 1535.94 | 通过检验 |
17:00—19:00 | 1.84 | 0.201 | 1.00 | 4893.22 | 通过检验 |
19:00—21:00 | 1.74 | -0.19 | 1.00 | 1501.15 | 通过检验 |
21:00—23:00 | 2.91 | -0.23 | 1.00 | 498.83 | 通过检验 |
Tab. 4
Weighted centrality of the top 10 nodes for each time period on August 13, 2015, Beijing"
时段 | 加权度中心性 | 排名前10的节点 |
---|---|---|
5:00—7:00 | 入 | 国贸、六里桥东、四惠、东直门、国贸东、天通苑北、六里桥北、燕莎桥南、北京西站、北京儿童医院 |
出 | 六里桥北、六里桥东、东直门、国贸东、北皋、国贸、四惠、东坝中路南口、东坝、大屯 | |
7:00—9:00 | 入 | 国贸、四惠、国贸东、东直门、大屯、北京儿童医院、六里桥东、西直门、中关村、天通苑北 |
出 | 国贸、四惠、东直门、六里桥北、六里桥东、大屯、北京儿童医院、航天桥、马甸桥、西直门 | |
9:00—11:00 | 入 | 国贸、中关村、东直门、四惠、国贸东、大屯、白石桥东、北京儿童医院、西直门、红庙路口 |
出 | 国贸、四惠、东直门、大屯、六里桥北、北京西站、红庙路口、六里桥东、西直门、国贸东 | |
11:00—13:00 | 入 | 国贸、东直门、大屯、四惠、前门、北京西站、六里桥东、国贸东、北京儿童医院、六里桥北 |
出 | 国贸、东直门、四惠、北京西站、大屯、北京儿童医院、六里桥北、六里桥东、西直门、国贸东 | |
13:00—15:00 | 入 | 国贸、东直门、大屯、四惠、北京西站、北京儿童医院、六里桥东、前门、六里桥北、国贸东 |
出 | 国贸、四惠、东直门、北京西站、大屯、六里桥东、北京儿童医院、木樨园桥、六里桥北、国贸东 | |
15:00—17:00 | 入 | 国贸、东直门、四惠、北京西站、大屯、六里桥北、六里桥东、前门、牡丹园、西直门 |
出 | 国贸、东直门、四惠、北京西站、大屯、北京儿童医院、动物园、西直门、六里桥东、木樨园桥 | |
17:00—19:00 | 入 | 六里桥北、四惠、国贸、大屯、东直门、六里桥东、牡丹园、通惠、西直门、八宝山 |
出 | 国贸、四惠、大屯、北京儿童医院、六里桥东、国贸东、东直门、北京西站、六里桥北、木樨园桥 | |
19:00—21:00 | 入 | 四惠、国贸、六里桥北、大屯、通惠、东直门、六里桥东、北京西站、沙河、红庙路口 |
出 | 国贸、四惠、国贸东、东直门、中关村、天通苑北、六里桥东、大屯、北京西站、六里桥北 | |
21:00—23:00 | 入 | 六里桥北、大屯、四惠、国贸、北京西站、北京西站、六里桥东、牡丹园、东直门、立水桥 |
出 | 国贸、中关村、四惠、国贸东、天通苑北、大屯、东直门、立水桥、北京西站、六里桥东 |
Tab. 5
Comparison of network characteristics between the passenger flow network and random network for each time period on August 13, 2015, Beijing"
时段 | L | Lr | C | Cr |
---|---|---|---|---|
5:00—7:00 | 3.32 | 2.54 | 0.41 | 0.02 |
7:00—9:00 | 2.84 | 2.20 | 0.52 | 0.03 |
9:00—11:00 | 2.89 | 2.26 | 0.50 | 0.03 |
11:00—13:00 | 2.90 | 2.31 | 0.48 | 0.03 |
13:00—15:00 | 2.93 | 2.33 | 0.47 | 0.02 |
15:00—17:00 | 2.94 | 2.30 | 0.48 | 0.03 |
17:00—19:00 | 2.88 | 2.24 | 0.51 | 0.03 |
19:00—21:00 | 2.87 | 2.27 | 0.49 | 0.03 |
21:00—23:00 | 3.06 | 2.43 | 0.41 | 0.02 |
[1] | Liu R, Chen Y, Wu J P, et al. Mapping spatial accessibility of public transportation network in an urban area: A case study of Shanghai Hongqiao transportation hub[J]. Transportation Research Part D: Transport and Environment, 2018,59:478-495. |
[2] | 吴康, 方创琳, 赵渺希. 中国城市网络的空间组织及其复杂性结构特征[J]. 地理研究, 2015,34(4):711-728. |
[ Wu K, Fang C L, Zhao M X. The spatial organization and structure complexity of Chinese intercity networks[J]. Geographical Research, 2015,34(4):711-728. ] | |
[3] | 陈光, 温广辉, 虞文武. 基于复杂网络的城市公交网络研究综述[J]. 南京信息工程大学学报(自然科学版), 2018,10(4):401-408. |
[ Chen G, Wen G H, Yu W W. A survey of studies on urban public transportation networks based on complex network[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2018,10(4):401-408. ] | |
[4] | 王姣娥, 莫辉辉, 金凤君. 中国航空网络空间结构的复杂性[J]. 地理学报, 2009,64(8):899-910. |
[ Wang J E, Mo H H, Jin F J. Spatial structural characteristics of chinese aviation network based on complex network theory[J]. Acta Geographica Sinica, 2009,64(8):899-910.] | |
[5] | 段德忠, 刘承良, 杜德斌, 等. 基于二分网络的北京公交线路布局的空间依赖性[J]. 地理学报, 2016,71(12):2185-2198. |
[ Duan D Z, Liu C L, Du D B, et al. Spatial dependency of bus-line distribution based on bipartite network: A case study of Beijing city[J]. Acta Geographica Sinica, 2016,71(12):2185-2198. ] | |
[6] | 唐秋生, 冯海峰, 李维. 基于复杂网络理论的长沙市公交网络拓扑性质研究[J]. 交通信息与安全, 2013,31(4):49-52. |
[ Tang Q S, Feng H F, Li W. Topology of Changsha public traffic network based on complex network theory[J]. Journal of Transport Information and Safety, 2013,31(4):49-52. ] | |
[7] | 许晴, 祖正虎, 徐致靖, 等. 330个中国城市P空间下公交复杂网络实证研究[J]. 交通运输系统工程与信息, 2013,13(1):193-198. |
[ Xu Q, Zu Z H, Xu Z Q. Space P-based empirical research on public transport complex networks in 330 cities of China[J]. Journal of Transportation Systems Engineering and Information Technology, 2013,13(1):193-198. ] | |
[8] | 钟少颖, 王宁宁, 陈锐. 北京市公交网络枢纽性和抗毁性——基于复杂网络分析方法的研究[J]. 城市发展研究, 2016,23(6):123-132. |
[ Zhong S Y, Wang N N, Chen R. The analysis of the hub and invulnerability of Beijing city bus transportation network based on complex network methods[J]. Urban Development Studies, 2016,23(6):123-132. ] | |
[9] | 王姣娥, 焦敬娟, 黄洁, 等. 交通发展区位测度的理论与方法[J]. 地理学报, 2018,73(4):666-676. |
[ Wang J E, Jiao J J, Huang J, et al. Theory and methodology of transportation development and location measures[J]. ActaGeographicaSinica, 2018,73(4):666-676. ] | |
[10] | Malleson N. Building temporal dynamism into applied GIS research[J]. Applied Spatial Analysis and Policy, 2019,12(1):1-3. |
[11] | 王凯, 甘畅, 杨亚萍, 等. 长江中游城市群市域旅游经济网络结构演变及其驱动因素[J]. 地理与地理信息科学, 2019,35(5):118-125. |
[ Wang K, Gan C, Yang Y P, et al. Evolution and driving factors of urban tourism economic network structure in urban agglomeration in the middle reaches of the Yangtze River[J]. Geography and Geo-Information Science, 2019,35(5):118-125. ] | |
[12] | 孟德友, 冯兴华, 文玉钊. 铁路客运视角下东北地区城市网络结构演变及组织模式探讨[J]. 地理研究, 2017,36(7):1339-1352. |
[ Meng D Y, Feng X H, Wen Y Z. Urban network structure evolution and organizational pattern in Northeast China from the perspective of railway passenger transport[J]. Geographical Research, 2017,36(7):1339-1352. ] | |
[13] | 余红楚, 方志祥, 陆锋, 等. 重要经济发展区域间海运网络时空演变特性分析[J]. 地球信息科学学报, 2018,20(5):582-592. |
[ Yu H C, Fang Z X, Lu F, et al. Spatial-temporal evolution patterns of maritime networks between important economic developing zones revealed[J]. Journal of Geo-information Science, 2018,20(5):582-592. ] | |
[14] | 刘帅宾, 杨山, 王钊. 基于人口流的中国省域城镇化空间关联特征及形成机制[J]. 地理学报, 2019,74(4):648-663. |
[ Liu B S, Yang S, Wang Z. Characteristics and formation mechanism of China's provincial urbanization spatial correlation based on population flow[J]. Acta Geographica Sinica, 2019,74(4):648-663.] | |
[15] | 陈少沛. 城市地铁网络拓扑时空演变特征模型研究[J]. 地理空间信息, 2019,17(9):5-9. |
[ Chen S P. Research on spatio-temporal evolution characteristic model of urban subway network topology[J]. Geospatial Information, 2019,17(9):5-9. ] | |
[16] | 龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 2012,67(10):1339-1352. |
[ Long Y, Zhang Y, Cui C Y. Identifying commuting pattern of Beijing using bus smart card data[J]. Acta Geographica Sinica, 2012,67(10):1339-1352. ] | |
[17] | 孟斌, 黄松, 尹芹. 北京市居民地铁出行出发时间弹性时空分布特征研究[J]. 地球信息科学学报, 2019,21(1):107-117. |
[ Meng B, Huang S, Yin Q. Spatial and temporal distribution characteristics of residents' depart times elasticity in Beijing[J]. Journal of Geo-information Science, 2019,21(1):107-117. ] | |
[18] | 刘瑜, 詹朝晖, 朱递, 等. 集成多源地理大数据感知城市空间分异格局[J]. 武汉大学学报·信息科学版, 2018,43(3):327-335. |
[ Liu Y, Zhan Z H, Zhu D, et al. Incorporating multi-source big geo-data to sense spatial heterogeneity pattern sina urban space[J]. Geomatics and Information Science of Wuhan University, 2018,43(3):327-335. ] | |
[19] | 徐晓宇, 李梅. 基于开源大数据的北京地区餐饮业空间分布格局[J]. 地球信息科学学报, 2019,21(2):215-225. |
[ Xu X Y, Li M. Analysis on spatial distribution pattern of Beijing restaurants based on open source big data[J]. Journal of Geo-information Science, 2019,21(2):215-225. ] | |
[20] | 尹芹, 孟斌, 张丽英. 基于客流特征的北京地铁站点类型识别[J]. 地理科学进展, 2016,35(1):126-134. |
[ Yin Q, Meng B, Zhang L Y. Classification of subway stations in Beijing based on passenger flow characteristics[J]. Progress in Geography, 2016,35(1):126-134. ] | |
[21] | 赵梓渝, 魏冶, 杨冉, 等. 中国人口省际流动重力模型的参数标定与误差估算[J]. 地理学报, 2019,74(2):203-221. |
[ Zhan Z Y, Wei Y, Yang R, et al. Gravity model coefficient calibration and error estimation: Based on Chinese interprovincial population flow[J]. Acta Geographica Sinica, 2019,74(2):203-221. ] | |
[22] | 徐敏, 黄震方, 曹芳东, 等. 基于大数据分析的城市旅游地网络结构特征及其演化模式——以新浪微博签到数据为例[J]. 地理研究, 2019,38(4):937-949. |
[ Xu M, Huang Z F, Cao F D, et al. The network structure of urban tourist destination and its evolution mode based on big data analysis: taking the data of Sina weibo sign-in as an example[J]. Geographical Research, 2019,38(4):937-949. ] | |
[23] | 刘大均. 长江中游城市群旅游流空间格局及发展模式[J]. 经济地理, 2018,38(5):217-223. |
[ Liu D J. Spatial pattern and development model of tourist flow in urban agglomeration in the middle reaches of the Yangtze River[J]. Economic Geography, 2018,38(5):217-223. ] | |
[24] | 黄爱玲, 关伟, 毛保华, 等. 北京公交线路客流加权复杂网络特性分析[J]. 交通运输系统工程与信息, 2013,13(6):198-204. |
[ Huang A L, Guan W, Mao B H, et al. Statistical analysis of weighted complex network in Beijing public transit routes system based on passenger flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2013,13(6):198-204. ] | |
[25] | 陈培文, 陈峰, 胡映月, 等. 基于复杂网络的城市轨道交通网络中心性研究[J]. 复杂系统与复杂性科学, 2017,14(2):97-102,109. |
[ Chen P W, Chen F, Hu Y Y, et al. On urban rail transit network centrality using complex network theory[J]. Complex Systems and Complexity Science, 2017,14(2):97-102,109. ] | |
[26] | 冯佳, 许奇, 李夏苗, 等. 城市轨道交通系统网络复杂性研究[J]. 交通运输系统工程与信息, 2017,17(6):242-247. |
[ Feng J, Xu Q, Li X M, et al. Complex Network Study on Urban Rail Transit Systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2017,17(6):242-247. ] | |
[27] | 黄洁, 王姣娥, 靳海涛, 等. 北京市地铁客流的时空分布格局及特征——基于智能交通卡数据[J]. 地理科学进展, 2018,37(3):397-406. |
[ Huang J, Wang J E, Jin H T, et al. Investigating spatiotemporal patterns of passenger flows in the Beijing metro system from smart card data[J]. Progress in Geography, 2018,37(3):397-406. ] | |
[28] | Feng J, Li X M, Mao B H, et al. Weighted complex network analysis of the Beijing subway system: Train and passenger flows[J]. Physica A: Statistical Mechanics and its Applications, 2017,474:213-223. |
[29] | 莫辉辉, 王姣娥. 复杂交通网络: 结构、过程与机理.北京:经济管理出版社, 2012. |
[ Mo H H, Wang J E. Complex transport network: Structure, process & mechanism[M]. Beijing: Economy & Management Publishing House, 2012. ] | |
[30] | 吴建军, 高自友, 孙会君, 等. 城市交通系统复杂性——复杂网络方法及其应用[M]. 北京: 科学出版社, 2010. |
[ Wu J J, Gao Z Y, Sun H J, et al. Complexity of urban traffic system--complex network method and its application[M]. Beijing, China: Science Press, 2010. ] | |
[31] | 王静, 刘剑锋, 马毅林, 等. 北京市轨道交通车站客流时空分布特征[J]. 城市交通, 2013,11(6):18-27. |
[ Wang J, Liu Jian F, Ma Y L, et al. Temporal and spatial passenger flow distribution characteristics at rail transit stations in Beijing[J]. Urban Transport of China, 2013,11(6):18-27. ] | |
[32] | Gan Z X, Feng T, Wu Y T, et al. Station-based average travel distance and its relationship with urban form and land use: An analysis of smart card data in Nanjing City, China[J]. Transport Policy, 2019,79:137-154. |
[33] | Fransen K, Neutens T, Farber S, et al. Identifying public transport gaps using time-dependent accessibility levels[J]. Journal of Transport Geography, 2015,48:176-187. |
[34] | Boisjoly G, El-Geneidy A. Daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures[J]. Journal of Transport Geography, 2016,52:73-81. |
[35] | 王成金. 中国交通流的衰减函数模拟及特征[J]. 地理科学进展, 2009,28(5):690-696. |
[ Wang C J. Function simulation and regularity of distance decay of inter-urban traffic flow in China[J]. Progress in Geography, 2009,28(5):690-696. ] | |
[36] | 陈卓, 金凤君, 杨宇, 等. 高速公路流的距离衰减模式与空间分异特征——基于福建省高速公路收费站数据的实证研究[J]. 地理科学进展, 2018,37(8):1086-1095. |
[ Chen Z, Jin F J, Yang Y, et al. Distance-decay pattern and spatial differentiation of expressway flow: An empirical study using data of expressway toll station in Fujian Province[J]. Progress in Geography, 2018,37(8):1086-1095. ] |
[1] | LIU Yaxi, SONG Ci, LIU Qiyong, ZHANG Zhixin, WANG Xi, MA Jia, CHEN Xiao, PEI Tao. Spatial-temporal Characteristics of COVID-19 in Chongqing and Its Relationship with Human Mobility [J]. Journal of Geo-information Science, 2021, 23(2): 222-235. |
[2] | WANG Xiaofan, FANG Zhixiang, ZHONG Haoyu, ZOU Xinyan. Periodic Optimization of Drug Purchase Needs on Site for Chronic Diseases under the Epidemic Prevention and Control [J]. Journal of Geo-information Science, 2021, 23(2): 307-317. |
[3] | GU Haisuo, CHEN Peng, LI Huibo. Overview and Prospect for Spatial-Temporal Prediction of Crime [J]. Journal of Geo-information Science, 2021, 23(1): 43-57. |
[4] | WANG Zhihua, YANG Xiaomei, ZHOU Chenghu. Geographic Knowledge Graph for Remote Sensing Big Data [J]. Journal of Geo-information Science, 2021, 23(1): 16-28. |
[5] | SONG Guanfu, CHEN Yong, LUO Qiang, WU Mengyao. Development and Prospect of GIS Platform Software Technology System [J]. Journal of Geo-information Science, 2021, 23(1): 2-15. |
[6] | ZHAO Pengjun, CAO Yushu. Identifying Metro Trip Purpose using Multi-source Geographic Big Data and Machine Learning Approach [J]. Journal of Geo-information Science, 2020, 22(9): 1753-1765. |
[7] | CHEN Ruru, HU Zhongmin, LI Shenggong, GUO Qun. Assessment of Normalized Difference Vegetation Index from Different Data Sources in Grassland of Northern China [J]. Journal of Geo-information Science, 2020, 22(9): 1910-1919. |
[8] | ZHANG Ya, LIU Jiping, ZHOU Liang, WANG Yong, LI Peng fei. Cluster Identification and Spatial Characteristics Analysis of Shunfeng Express Service Facilities based on the DBSCAN Algorithm in Beijing [J]. Journal of Geo-information Science, 2020, 22(8): 1630-1641. |
[9] | LI Wan, NIU Lu, CHEN Hong, WU Hua. Robust Downscaling Method of Land Surface Temperature by Using Random Forest Algorithm [J]. Journal of Geo-information Science, 2020, 22(8): 1666-1678. |
[10] | SONG Rong, HU Yecui. Comprehensive Zoning of Land Consolidation Potential in Cities of China and Optimization Pathways [J]. Journal of Geo-information Science, 2020, 22(7): 1522-1531. |
[11] | YAO Kezhen, YUE Shuping. Study on Spatial Distribution of Modern Sweet Diet and its Impact Factors in China based on Big Data from Internet [J]. Journal of Geo-information Science, 2020, 22(6): 1202-1215. |
[12] | SUN Wei, LIN Xiaona. The Spatial Distribution of Automobile Manufacturing Enterprises and its Influencing Factors in Liuzhou [J]. Journal of Geo-information Science, 2020, 22(6): 1216-1227. |
[13] | LI Tao, WANG Jiaoe, HUANG Jie. Research on Travel Pattern and Network Characteristics of Inter-city Travel in China's Urban Agglomeration during the National Day Week based on Tencent Migration Data [J]. Journal of Geo-information Science, 2020, 22(6): 1240-1253. |
[14] | DU Delin, HUANG Jie, WANG Jiaoe. Assessment of Smart City Development Status in China based on Multi-source Data [J]. Journal of Geo-information Science, 2020, 22(6): 1294-1306. |
[15] | CHEN Fangmiao, HUANG Huiping, JIA Kun. Study on the Administration and Construction of Urban Agglomeration with Spatiotemporal Big Data: A Progress Review [J]. Journal of Geo-information Science, 2020, 22(6): 1307-1319. |
|