Journal of Geo-information Science ›› 2020, Vol. 22 ›› Issue (11): 2128-2139.doi: 10.12082/dqxxkx.2020.190668
Previous Articles Next Articles
MAO Wenshan1,2,3,4(), ZHAO Hongli4,*(
), SUN Fengjiao5, JIANG Yunzhong4, JIANG Qian1,2,3,4, ZHU Yanru1,2,3,4
Received:
2019-11-07
Revised:
2020-01-10
Online:
2020-11-25
Published:
2021-01-25
Contact:
ZHAO Hongli
E-mail:1098748344@qq.com;Zhaohl@iwhr.com
Supported by:
MAO Wenshan, ZHAO Hongli, SUN Fengjiao, JIANG Yunzhong, JIANG Qian, ZHU Yanru. Personalized Recommendation Method of Thematic Map Products based on Item2Vec with Negative Sampling Optimization[J].Journal of Geo-information Science, 2020, 22(11): 2128-2139.DOI:10.12082/dqxxkx.2020.190668
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 4
Parameter settings in this article model"
参数 | 释义 | Thematic CMaps | MovieLens-100K/ MovieLens-1M | MovieLens-10M | MovieLens-20M |
---|---|---|---|---|---|
size | item向量维度 | 5 | 20/100 | 128 | 250 |
window | 上下文窗口长度 | 3 | 3/4 | 6 | 8 |
negative | 负采样个数 | 32 | 64/64 | 128 | 256 |
sg/hs | 训练模式/采样模式 | 0/0 | 0/0 | 0/0 | 0/0 |
min_count | item向量最小频次 | 3 | 4/5 | 6 | 8 |
iter | 训练迭代次数 | 5 | 5/50 | 100 | 200 |
alpha | 迭代学习率 | 0.025 | 0.025 | 0.050 | 0.050 |
Tab. 5
Comparison of prediction score performance on each model"
模型 | Thematic CMaps | MovieLens-100K | MovieLens-1M | MovieLens-10M | MovieLens-20M |
---|---|---|---|---|---|
LFM | 1.338 | 1.221 | 1.196 | 1.169 | 1.130 |
Personal Rank | 1.324 | 1.212 | 1.183 | 1.176 | 1.122 |
Content Based | 1.297 | 1.194 | 1.087 | 1.007 | 0.914 |
SVD | 1.135 | 0.938 | 0.906 | 0.886 | 0.850 |
YouTubeNet | 1.129 | 0.923 | 0.885 | 0.872 | 0.831 |
Item2Vec(霍夫曼) | 1.123 | 0.917 | 0.881 | 0.851 | 0.807 |
Item2Vec(负采样) | 1.118 | 0.912 | 0.875 | 0.835 | 0.783 |
Tab. 7
Two recommended results comparison between Item2Vec (Negative Sampling) and SVD"
种子专题地图 | Item2Vec(负采样)—Top5 | SVD—Top5 |
---|---|---|
107国道线路 地图——交通 地图|国道 线路图 | 109国道线路地图——交通地图|国道线路图 | 全国国道线路图——交通地图|国道线路图 |
全国国道线路图——交通地图|国道线路图 | 102国道线路地图——交通地图|国道线路图 | |
全国国道分布图——交通地图|国道线路图 | 104国道线路地图——交通地图|国道线路图 | |
102国道线路地图——交通地图|国道线路图 | 318国道全程示意图——交通地图|国道线路图 | |
318国道全程示意图——交通地图|国道线路图 | 317国道线路地图——交通地图|国道线路图 | |
四川省宜宾市 泸州市交通 地图——交通 地图|公路地图集 | 四川省雅安市阿垻州交通地图——交通地图|公路地图集 | 宁夏交通地图全图——交通地图|公路地图集 |
四川省眉山市乐山市交通地图——交通地图|公路地图集 | 四川省眉山市乐山市交通地图——交通地图|公路地图集 | |
四川省交通地图全图——交通地图|公路地图集 | 四川省交通地图全图——交通地图|公路地图集 | |
四川省成都市交通地图——交通地图|公路地图集 | 湖南省长沙株洲衡阳怀化交通地图——交通地图|公路 地图集 | |
四川南充德阳达州自贡内江交通地图——交通地图|公路 地图集 | 四川高速公路地 | |
四川高速公路 地 交通地图|高速 公路网 | 四川18条高速公路线路规划 路网 | 四川省收费公路主线站点分布图——交通地图|高速公路网 |
云南高速公路地 | 国家高速公路网线路图——交通地图|高速线路图 | |
国家高速公路网规划方案图——交通地图|高速公路网 | 国家高速公路网布局——交通地图|高速线路图 | |
国家高速公路网线路图——交通地图|高速线路图 | 四川18条高速公路线路规划 公路网 | |
甘肃高速公路地 | 云南高速公路地 |
[1] | Aleksandra K M, Mirjana I, Nanopoulos A. Recommender systems in e-learning environments: A survey of the state-of-the-art and possible extensions[J]. Artificial Intelligence Review, 2015,44(4):571-604. |
[2] | 郑束蕾, 陈毓芬, 杨春雷, 等. 地图个性化认知适合度的眼动试验评估[J]. 测绘学报, 2015,44(s1):27-35. |
[ Zheng S L, Chen Y F, Yang C L, et al. Quantitative evaluation of personalized cognition suitability on maps by eye movement experiment[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(s1):27-35. ] | |
[3] | 方潇, 李萌, 包芃, 等. 基于眼动实验的个性化地图推荐模型探讨[J]. 地理空间信息, 2015,13(1):167-170. |
[ Fang X, Li M, Bao F, et al. Discussion on personalized map recommendation model based on eye movement experiment[J]. Geospatial Information, 2015,13(1):167-170. ] | |
[4] | 冯天文, 李轶鲲, 刘涛, 等. 语义扩散检索方法研究——以火灾应急图组库为例[J]. 测绘科学, 2018,43(12):115-121. |
[ Feng T W, Li Y K, Liu T, et al. Research on semantic spreading retrieval method: A case study of fire emergency map base[J]. Science of Surveying and Mapping, 2018,43(12):115-121. ] | |
[5] | Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8):30-37. |
[6] | Lang K. NewsWeeder: Learning to filter net-news [C]// Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, California, July 9-12, 1995: 331-339. |
[7] | Almahairi A, Kastner K, Cho K, et al. Learning distributed representations from reviews for collaborative filtering [C]// RecSys'15: Proceedings of the 9th ACM Conference on Recommender Systems, September 2015: 147-154. |
[8] | 姜波, 张晓筱, 潘伟丰. 基于二部图的服务推荐算法研究[J]. 华中科技大学学报(自然科学版), 2013,41(s2):93-99. |
[ Jiang B, Zhang X Y, Pan W F. Bipartite graph-based service recommendation method study[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2013,41(s2):93-99. ] | |
[9] | 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018,427(7):191-219. |
[ Huang L W, JiangB T, Lv S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018,427(7):191-219. ] | |
[10] | 吴彦文, 刘闯. 基于用户偏好和可疑度的推荐方法研究[J]. 计算机应用研究, 2018,35(12):118-120. |
[ Wu Y W, Liu C. Research on recommendation method based on user preference and suspicious degree[J]. Application Research of Computers, 2018,35(12):118-120. ] | |
[11] | Barkan O, Koenigstein N. Item2Vec: Neural item embedding for collaborative filtering [C]// Proceedings of IEEE International Workshop on Machine Learning for Signal Processing, Washington D.C., USA: IEEEPress, 2016: 1-6. |
[12] | 陈晋音, 吴洋洋, 林翔. 基于图过滤的快速密度聚类双层网络推荐算法[J]. 控制理论与应用, 2019,36(4):542-552. |
[ Chen J Y, Wu Y Y, Lin X. Double layered recommendation algorithm based on fast density clustering with graph-based filtering & Applications[J]. Control Theory & Applications, 2019,36(4):542-552. ] | |
[13] | 黄金超, 张佳伟, 陈宁, 等. 基于偏好度特征构造的个性化推荐算法[J]. 上海交通大学学报, 2018,52(7):770-776. |
[ Huang J C, Zhang J W, Chen N, et al. Preference degree based personalized recommendation algorithm[J]. Journal of Shanghai Jiaotong University, 2018,52(7):770-776. ] | |
[14] | 张敏, 丁弼原, 马为之, 等. 基于深度学习加强的混合推荐方法[J]. 清华大学学报(自然科学版), 2017,57(10):1014-1021. |
[ Zhang M, Ding B Y, Ma W Z, et al. Hybrid recommendation approach enhanced by deep learning[J]. Journal of Tsinghua University (Science and Technology), 2017,57(10):1014-1021. ] | |
[15] | 陈冬林, 聂规划, 刘平峰. 基于网页语义相似性的商品隐性评分算法[J]. 系统工程理论与实践, 2006,26(11):98-102. |
[ Chen D L, Nie G H, Liu P F. An algorithm for goods implicit rating based on web pages semantic similarity[J]. System Engineering Theory and Practice, 2006,26(11):98-102. ] | |
[16] | Kenter T, Borisov A, De R M. Siamese CBOW: Optimizing word embeddings for sentence representations [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, August 7-12, 2016: 941-951. |
[17] | 刘淑涵, 王艳东, 付小康. 利用卷积神经网络提取微博中的暴雨灾害信息[J]. 地球信息科学学报, 2019,21(7):1009-1017. |
[ Liu S H, Wang Y D, Fu X K. Extracting rainstorm disaster information from microblogs using convolutional neural network[J]. Journal of Geo-information Science, 2019,21(7):1009-1017. ] | |
[18] | Yao W, He J, Huang G, et al. A graph-based model for context-aware recommendation using implicit feedback data[J]. World Wide Web, 2015,18(5):1351-1371. |
[19] | Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [C]// U-AI'98: Proceedings of the Fourteenth conference on Uncertainty in Artificial Intelligence, July 1998: 43-52. |
[20] | Kenter T, Borisov A, De R.M. Siamese CBOW: Optimizing word embeddings for sentence representations[J]. ACL 2016, June 2016,2016:941-951. |
[21] | Qin P, Xu W, Guo J. A novel negative sampling based on TFIDF for learning word representation[J]. Neurocomputing, 2015,177:257-265. |
[22] | Mikolov T, Sutskever I, Kai C, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013,26:3111-3119. |
[23] | Bansal B, Srivastava S. Sentiment classification of online consumer reviews using word vector representations [C]// Procedia Computer Science, 2018: 1147-1153. |
[24] | Karumur R P, Nguyen T T, Konstan J A. Exploring the value of personality in predicting rating behaviors: a study of category preferences on MovieLens [C]// Proceedings of the 10th ACM Conference on Recommender Systems, 2016: 139-142. |
[25] | Aggarwal C C. Recommender Systems || Evaluating Recommender Systems[M]. New York: Recommender Systems, 2016. |
[26] | Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model [C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, ACM, 2008: 426-434. |
[27] | Christian Ü, Christopher K, Veselin R, et al. Recommendations in a heterogeneous service environment[J]. Multimedia Tools and Applications, 2013,62(3):785-820. |
[1] | CHEN Ang, YANG Xiuchun, XU Bin, JIN Yunxiang, ZHANG Wenbo, GUO Jian, XING Xiaoyu, YANG Dong. Research on Recognition Methods of Elm Sparse Forest based on Object-based Image Analysis and Deep Learning [J]. Journal of Geo-information Science, 2020, 22(9): 1897-1909. |
[2] | CUI Cheng, REN Hongyan, ZHAO Lu, ZHUANG Dafang. Street Space Quality Evaluation in Yuexiu District of Guangzhou City based on Multi-feature Fusion of Street View Imagery [J]. Journal of Geo-information Science, 2020, 22(6): 1330-1338. |
[3] | GUO Zihui, LIU Wei. Land Type Interpretation Authenticity Check of Vector Patch Supported by Deep Learning and Remote Sensing Image [J]. Journal of Geo-information Science, 2020, 22(10): 2051-2061. |
[4] | SONG Guanfu, LU Hao, WANG Chenliang, HU Chenpu, HUANG Kejia. A Tentative Study on System of Software Technology for Artificial Intelligence GIS [J]. Journal of Geo-information Science, 2020, 22(1): 76-87. |
[5] | CAI Bowen,WANG Shugen,WANG Lei,SHAO Zhenfeng. Extraction of Urban Impervious Surface from High-Resolution Remote Sensing Imagery based on Deep Learning [J]. Journal of Geo-information Science, 2019, 21(9): 1420-1429. |
[6] | Huihui CAI, Wei ZHU, Zixuan LI, Yuanyuan LIU, Longbin LI, Chang LIU. Prediction Method of Tungsten-molybdenum Prospecting Target Area based on Deep Learning [J]. Journal of Geo-information Science, 2019, 21(6): 928-936. |
[7] | Ying FANG, Lianfa LI. Spatiotemporal Estimation of High-Accuracy and High-Resolution Meteorological Parameters based on Machine Learning [J]. Journal of Geo-information Science, 2019, 21(6): 799-813. |
[8] | Gang ZHANG, Wenbin LIU, Nan ZHANG. Progressive Morphological Filtering Method of Dense Matching Point Cloud based on Region Feature Segmentation [J]. Journal of Geo-information Science, 2019, 21(4): 615-622. |
[9] | Yao YAO, Shuliang REN, Junyi WANG, Qingfeng GUAN. Mapping the Fine-Scale Housing Price Distribution by Integrating a Convolutional Neural Network and Random Forest [J]. Journal of Geo-information Science, 2019, 21(2): 168-177. |
[10] | Yilan LIU, Xiaoxia HUANG, Hongga LI, Ze LIU, Chong CHENG, Xin'ge WANG. Extraction of Irregular Solid Waste in Rural based on Convolutional Neural Network and Conditional Random Field Method [J]. Journal of Geo-information Science, 2019, 21(2): 259-268. |
[11] | LIU Hao, LUO Jiancheng, HUANG Bo, YANG Haiping, HU Xiaodong, XU Nan, XIA Liegang. Building Extraction based on SE-Unet [J]. Journal of Geo-information Science, 2019, 21(11): 1779-1789. |
[12] | Liying ZHANG, Tao PEI, Yijin CHEN, Ci SONG, Xiaoqian LIU. A Review of Urban Environmental Assessment based on Street View Images [J]. Journal of Geo-information Science, 2019, 21(1): 46-58. |
[13] | LIU Wentao,LI Shihua,QIN Yuchu. Automatic Building Roof Extraction with Fully Convolutional Neural Network [J]. Journal of Geo-information Science, 2018, 20(11): 1562-1570. |
[14] | WANG Jinchuan,TAN Xicheng,WANG Zhaohai,ZHONG Yanfei,DONG Huaping,ZHOU Songtao,CHENG Buyi. Faster R-CNN Deep Learning Network Based Object Recognition of Remote Sensing Image [J]. Journal of Geo-information Science, 2018, 20(10): 1500-1508. |
[15] | CHEN Gong,LI Qi,JIN Lingyan,LIANG Heming,Hamed Karimian,MO Yuqin. Spatio-temporal Simulation and Prediction of Regional Ecological Security Based on Deep Learning [J]. Journal of Geo-information Science, 2017, 19(7): 915-923. |
|