Journal of Geo-information Science ›› 2021, Vol. 23 ›› Issue (2): 222-235.doi: 10.12082/dqxxkx.2021.200296
Previous Articles Next Articles
LIU Yaxi1,2(), SONG Ci1, LIU Qiyong3, ZHANG Zhixin4, WANG Xi1,2, MA Jia5, CHEN Xiao1,2, PEI Tao1,2,*(
)
Received:
2020-06-09
Revised:
2020-07-20
Online:
2021-02-25
Published:
2021-04-25
Contact:
PEI Tao
E-mail:liuyx@lreis.ac.cn;peit@lreis.ac.cn
Supported by:
LIU Yaxi, SONG Ci, LIU Qiyong, ZHANG Zhixin, WANG Xi, MA Jia, CHEN Xiao, PEI Tao. Spatial-temporal Characteristics of COVID-19 in Chongqing and Its Relationship with Human Mobility[J].Journal of Geo-information Science, 2021, 23(2): 222-235.DOI:10.12082/dqxxkx.2021.200296
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | WHO. Coronavirus disease (COVID-19) situation reports[EB/OL].https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200602-covid-19-sitrep-134.pdf?sfvrsn=cc95e5d5_2 |
[2] | Fanelli D, Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France[J]. Chaos, Solitons & Fractals, 2020,134:109761. |
[3] | Wu J T, Leung K, Leung G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan,China:a modelling study[J]. The Lancet, 2020,395(10225):689-697. |
[4] |
Cao Z, Zhang Q, Lu X , et al. Incorporating human movement data to improve epidemiological estimates for 2019-nCoV[J]. medRxiv [preprint], 2020. doi: 10.1101/2020.02.07.20021071.
doi: 10.1101/2020.04.15.20064931 pmid: 32511587 |
[5] |
Jia J S, Lu X, Yuan Y , et al. Population flow drives spatio-temporal distribution of COVID-19 in China[J]. Nature, 2020,582:389-394.
doi: 10.1038/s41586-020-2284-y pmid: 32349120 |
[6] |
Chen Z L, Zhang Q, Lu Y , et al. Distribution of the COVID-19 epidemic and correlation with population emigration from wuhan, China[J]. Chinese Medical Journal, 2020,133(9):1044-1050.
pmid: 32118644 |
[7] |
Chinazzi M, Davis J T, Ajelli M , et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak[J]. Science, 2020,368(6489):395-400.
doi: 10.1126/science.aba9757 pmid: 32144116 |
[8] |
Kraemer M U G, Yang C H, Gutierrez B , et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020,368(6490):493-497.
doi: 10.1126/science.abb4218 pmid: 32213647 |
[9] |
Tian H, Liu Y, Li Y , et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020,368(6491):638-642.
pmid: 32234804 |
[10] | Gao S, Rao J, Kang Y , et al. Mapping county-level mobility pattern changes in the United States in response to COVID-19[J]. SIGSPATIAL Special, 2020,12(1):16-26. |
[11] | Gao S, Rao J, Kang Y , et al. Mobile phone location data reveal the effect and geographic variation of social distancing on the spread of the COVID-19 epidemic[J]. arXiv preprint arXiv: 2004.11430, 2020. |
[12] | Wang J, Tang K, Feng K , et al. When is the COVID-19 Pandemic Over? Evidence from the Stay-at-home Policy Execution in 106 Chinese Cities[J]. Available at SSRN: https://ssrn.com/abstract=3561491, 2020. |
[13] | 王皎贝, 李钢, 王建坡, 等. 陕西省COVID-19疫情时空演化与风险画像[J]. 热带地理, 2020,40(3):432-445. |
[ Wang J B, Li G, Wang J P, et al. Spatiotemporal evolution and risk profiling of COVID-19 epidemic in ShanxiProvince[J]. Tropical Geography, 2020,40(3):432-445. ] | |
[14] | 刘郑倩, 叶玉瑶, 张虹鸥, 等. 珠海市新型冠状病毒肺炎聚集发生的时空特征及传播路径[J]. 热带地理, 2020,40(3):422-431. |
[ Liu Z Q, Ye Y Y, Zhang H O, et al. Analysis of the spatio-temporal characteristics and transmission path ofCOVID-19 cluster cases in Zhuhai[J]. Tropical Geography, 2020,40(3):422-431. ] | |
[15] | 赵宏波, 魏甲晨, 王爽, 等. 大城市新冠肺炎疫情风险评估与精准防控对策——以郑州市为例[J]. 经济地理, 2020,40(4):103-109,124. |
[ Zhao H B, Wei J C, Wang S, et al. The risk assessment of Covid-2019 epidemic in metropolis and precise preventionand control measures: A case study of Zhengzhou City[J]. Economic Geography, 2020,40(4):103-109,124. ] | |
[16] | 金安楠, 李钢, 王皎贝, 等. 深圳市新型冠状病毒肺炎(COVID-19)疫情时空演化与防控对策[J]. 陕西师范大学学报(自然科学版), 2020,48(3):18-32. |
[ Jin A N, Li G, Wang J B, et al. Spatial-temporal evolution and control strategies of COVID-19 epidemic in Shenzhen City[J]. Journal of Shanxi Normal University (Natural Science Edition), 2020,48(3):18-32. ] | |
[17] | 刘勇, 杨东阳, 董冠鹏, 等. 河南省新冠肺炎疫情时空扩散特征与人口流动风险评估——基于1243例病例报告的分析[J]. 经济地理, 2020,40(3):24-32. |
[ Liu Y, Yang D Y, Dong G P, et al. The spatio-temporal spread characteristics of 2019 novel coronavirus pneumoniaand risk assessment based on population movement in Henan Province:Analysis of 1243 individual case reports[J]. Economic Geography, 2020,40(3):24-32. ] | |
[18] | 冯明翔, 方志祥, 路雄博, 等. 交通分析区尺度上的新型冠状病毒肺炎时空扩散推估方法:以武汉市为例[J]. 武汉大学学报·信息科学版, 2020,45(5):651-657,681. |
[ Feng M X, Fang Z X, Lu X B, et al. Traffic analysis zone-based epidemic estimation approach of COVID-19 based onmobile phone data:An example of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2020,45(5):651-657,681. ] | |
[19] | Klein B, LaRocky T, McCabey S , et al. Assessing changes in commuting and individual mobility in major metropolitan areas in the United States during the COVID-19 outbreak. Northeastern University. Network Science Institute. 2020. Available online: https://uploads-ssl.webflow.com/5c9104426f6f88ac129ef3d2/e8374ee75221201609ab586_Assessing_mobility_changes_in_the_United_States_during_the_COVID_19_outbreak.pdf |
[20] |
Wallinga J , LipsitchM. How generation intervals shape the relationship between growth rates and reproductive numbers[J]. Proceedings. Biological Sciences, 2007,274(1609):599-604.
doi: 10.1098/rspb.2006.3754 pmid: 17476782 |
[21] | 国家卫生健康委办公厅. 新型冠状病毒肺炎防控方案(第六版)[EB/OL]. http://www.nhc.gov.cn/jkj/s3577/202003/4856d5b0458141fa9f376853224d41d7.shtml. |
[ General Office of National Health Commission. Prevention and control protocol for COVID-19 (Version 6)[EB/OL]. http://www.nhc.gov.cn/jkj/s3577/202003/4856d5b0458141fa9f376853224d41d7.shtml.] | |
[22] | Ma L, Gong M, Liu J , et al. Multi-level learning based memetic algorithm for community detection[J]. Applied Soft Computing, 2014,19:121-133. |
[1] | YING Shen, DOU Xiaoying, XU Yajie, SU Junru, LI Lin. Visualization of the Epidemic Situation of COVID-19 [J]. Journal of Geo-information Science, 2021, 23(2): 211-221. |
[2] | XIE Conghui, WU Shixin, ZHANG Chen, SUN Wentao, HE Haifang, PEI Tao, LUO Geping. Analysis of Time Series Features of COVID-19 in Various Countries based on Pedigree Clustering [J]. Journal of Geo-information Science, 2021, 23(2): 236-245. |
[3] | WU Xibo, LAI Changqiang, GE Zhizhuan. Study on Agglomeration, Evolution and Autocorrelation Effects of Spatio-temporal of COVID-19 Epidemic in Prefecture-level Cities in China during Government's Strict Control Period [J]. Journal of Geo-information Science, 2021, 23(2): 246-258. |
[4] | BI Jia, WANG Xianmin, HU Yueyi, LUO Menghan, ZHANG Junhua, HU Fengchang, DING Ziyang. A Method for Dynamic Risk Assessment and Prediction of Public Health Emergencies based on an Improved SEIR Model: Novel Coronavirus COVID-19 in Ten European Countries [J]. Journal of Geo-information Science, 2021, 23(2): 259-273. |
[5] | WEI Yuanyuan, JIANG Nan, CHEN Yunhai, LI Xiang, YANG Zhenkai. Modeling and Application of Epidemic Risk Assessment Considering Spatial Interaction of Spatial-temporal Objects [J]. Journal of Geo-information Science, 2021, 23(2): 274-283. |
[6] | FANG Yunhao, GU Kangkang. Exploration on Geospatial Risk Assessment in China based on Multiple Data: A Case Study of COVID-19 Data from January 1 to April 11, 2020 [J]. Journal of Geo-information Science, 2021, 23(2): 284-296. |
[7] | CAO Zhonghao, ZHANG Jianqin, YANG Mu, JIA Lipeng, DENG Shaocun. The City Agent Model of COVID-19 based on GIS and Application: A Case Study of Guangzhou [J]. Journal of Geo-information Science, 2021, 23(2): 297-306. |
[8] | DU Yixian, XU Jiapeng, ZHONG Linying, HOU Yingxu, SHEN Jie. Analysis and Visualization of Multi-dimensional Characteristics of Network Public Opinion Situation and Sentiment: Taking COVID-19 Epidemic as an Example [J]. Journal of Geo-information Science, 2021, 23(2): 318-330. |
[9] | HAN Keke, XING Ziyao, LIU Zhe, LIU Junming, ZHANG Xiaodong. Research on Public Opinion Analysis Methods in Major Public Health Events: Take COVID-19 Epidemic as an Example [J]. Journal of Geo-information Science, 2021, 23(2): 331-340. |
[10] | ZHANG Chen, MA Xiangyuan, ZHOU Yang, GUO Renzhong. Analysis of Public Opinion Evolution in COVID-19 Pandemic from a Perspective of Sentiment Variation [J]. Journal of Geo-information Science, 2021, 23(2): 341-350. |
[11] | XUE Haonan, ZHANG Xueying, WU Mingguang, CAO Tianyang. The Analysis Method of Changes in "Global-China" International Relations during the COVID-19 Event based on News Data [J]. Journal of Geo-information Science, 2021, 23(2): 351-363. |
[12] | PEI Tao, WANG Xi, SONG Ci, LIU Yaxi, HUANG Qiang, SHU Hua, CHEN Xiao, GUO Sihui, ZHOU Chenghu. Review on Spatiotemporal Analysis and Modeling of COVID-19 Pandemic [J]. Journal of Geo-information Science, 2021, 23(2): 188-210. |
[13] | GAO Ying, SONG Ci, GUO Sihui, PEI Tao. Spatial-temporal Characteristics and Influencing Factors of Source and Sink of Dockless Sharing Bicycles Connected to Subway Stations [J]. Journal of Geo-information Science, 2021, 23(1): 155-170. |
[14] | SUN Yang, LIU Xin, SU Yacong, XU Shuang, JI Bing, ZHANG Zhijie. County Urbanization Level Estimated from Nighttime Light Data in Anhui Province [J]. Journal of Geo-information Science, 2020, 22(9): 1837-1847. |
[15] | ZHANG Ya, LIU Jiping, ZHOU Liang, WANG Yong, LI Peng fei. Cluster Identification and Spatial Characteristics Analysis of Shunfeng Express Service Facilities based on the DBSCAN Algorithm in Beijing [J]. Journal of Geo-information Science, 2020, 22(8): 1630-1641. |
|