Journal of Geo-information Science ›› 2021, Vol. 23 ›› Issue (2): 188-210.doi: 10.12082/dqxxkx.2021.200434
Previous Articles Next Articles
PEI Tao1,2,*(), WANG Xi1,2, SONG Ci1,2, LIU Yaxi1,2, HUANG Qiang1,2, SHU Hua1,2, CHEN Xiao1,2, GUO Sihui1,2, ZHOU Chenghu1,2
Received:
2020-08-03
Revised:
2020-08-21
Online:
2021-02-25
Published:
2021-04-25
Contact:
PEI Tao
E-mail:peit@lreis.ac.cn
Supported by:
PEI Tao, WANG Xi, SONG Ci, LIU Yaxi, HUANG Qiang, SHU Hua, CHEN Xiao, GUO Sihui, ZHOU Chenghu. Review on Spatiotemporal Analysis and Modeling of COVID-19 Pandemic[J].Journal of Geo-information Science, 2021, 23(2): 188-210.DOI:10.12082/dqxxkx.2021.200434
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Huang C L, Wang Y M, Li X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020,395(10223):497-506.
doi: 10.1016/S0140-6736(20)30183-5 pmid: 31986264 |
[2] | 白歌, 耿争. 一图速懂|新发地疫情时间轴[EB/OL]. https://baijiahao.baidu.com/s?id=1669906595168892675&wfr=spider&for=pc, 2020-06-19. |
[ Bai G, Geng Z. Timeline of the COVID-19 outbreak in Xinfadi Market[EB/OL]. https://baijiahao.baidu.com/s?id=1669906595168892675&wfr=spider&for=pc,, 2020-06-19.] | |
[3] | 杨海燕, 徐洁, 李岩, 等. 新型冠状病毒肺炎聚集性疫情特征初步分析[J]. 中华流行病学杂志, 2020,41(5):623-628. |
[ Yang H Y, Xu J, Li Y, et al. The preliminary analysis on the characteristics of the cluster for the COVID-19[J]. Chinese Journal of Epidemiology, 2020,41(5):623-628. ] | |
[4] |
Zhou C H, Su F Z, Pei T, et al. COVID-19: Challenges to GIS with big data[J]. Geography and Sustainability, 2020,1(1):77-87.
doi: 10.1016/j.geosus.2020.03.005 |
[5] | 邓志强, 夏文, 范义兵, 等. 南昌市一起新型冠状病毒肺炎聚集性疫情传播链分析[J]. 中华流行病学杂志,2020,41(2020-04-15). http://rs.yiigle.com/yufabiao/1189243.htm. DOI:10.3760/cma.j.cn112338-20200313-00334. |
[ Deng Z Q, Xia W, Fan Y B, et al. Analysis on transmission chain of a cluster epidemic of COVID-19, Nanchang[J]. Chinese Journal of Epidemiology , 2020,41(2020-04-15). http://rs.yiigle.com/yufabiao/1189243.htm. DOI:10.3760/cma.j.cn112338-20200313-00334.] | |
[6] | 陈晓慧, 刘俊楠, 徐立, 等. COVID-19病例活动知识图谱构建——以郑州市为例[J]. 武汉大学学报·信息科学版, 2020,45(6):816-825. |
[ Chen X H, Liu J N, Xu L, et al. Construction of the COVID-19 epidemic cases activity knowledge graph: A case study of Zhengzhou city[J]. Geomatics and Information Science of Wuhan University, 2020,45(6):816-825. ] | |
[7] | 刘郑倩, 叶玉瑶, 张虹鸥, 等. 珠海市新型冠状病毒肺炎聚集发生的时空特征及传播路径[J]. 热带地理, 2020,40(3):422-431. |
[ Liu Z Q, Ye Y Y, Zhang H O, et al. Analysis of the spatio-temporal characteristics and transmission path of COVID-19 cluster cases in Zhuhai[J]. Tropical Geography, 2020,40(3):422-431. ] | |
[8] | 金安楠, 李钢, 王皎贝, 等. 深圳市新型冠状病毒肺炎(COVID-19)疫情时空演化与防控对策[J]. 陕西师范大学学报(自然科学版), 2020,48(3):18-32. |
[ Jin A N, Li G, Wang J B, et al. Spatial-temporal evolution and control strategies of COVID-19 epidemic in Shenzhen city[J]. Journal of Shanxi Normal University (Natural Science Edition), 2020,48(3):18-32. ] | |
[9] |
Zhang Y J, Li Y Y, Wang L, et al. Evaluating transmission heterogeneity and super-spreading event of COVID-19 in a metropolis of China[J]. International Journal of Environmental Research and Public Health, 2020,17(10):3705.
doi: 10.3390/ijerph17103705 |
[10] | 健康码背后的大数据揭秘[J]. 今日科技, 2020(3):44-48. |
[ Uncovering the big data behind the “Health Code”[J]. Today Science & Technology, 2020(3):44-48. ] | |
[11] | Zhou C S, Yuan W, Wang J, et al. Detecting suspected epidemic cases using trajectory big data[J]. arXiv preprint arXiv:2004.00908, 2020. |
[12] | 中国电子科技集团有限公司. 新冠肺炎“密切接触者测量仪”上线运行[EB/OL]. http://www.sastind.gov.cn/n112/n117/c6808819/content.html,2020-02-10. |
[ China Electronics Technology Group Corporation Limited. COVID-19 “Close Contact Meter” goes online[EB/OL]. http://www.sastind.gov.cn/n112/n117/c6808819/content.html, 2020-02-10.] | |
[13] |
Chen C M, Jyan H W, Chien S C, et al. Containing COVID-19 among 627,386 persons in contact with the Diamond Princess cruise ship passengers who disembarked in Taiwan: Big data analytics[J]. Journal of Medical Internet Research, 2020,22(5):e19540.
doi: 10.2196/19540 pmid: 32353827 |
[14] |
Wang S S, Ding S Z, Xiong L. A new system for surveillance and digital contact tracing for COVID-19: Spatiotemporal reporting over network and GPS[J]. JMIR mHealth and uHealth, 2020,8(6):e19457.
doi: 10.2196/19457 pmid: 32499212 |
[15] | Nguyen K A, Luo Z Y, Watkins C. Epidemic contact tracing with smartphone sensors[J]. arXiv preprint arXiv:2006.00046, 2020. |
[16] |
Lin Q S, Hu T J, Zhou X H. Estimating the daily trend in the size of the COVID-19 infected population in Wuhan[J]. Infectious Diseases of Poverty, 2020,9(1):69.
doi: 10.1186/s40249-020-00693-4 pmid: 32552794 |
[17] |
Wang H W, Wang Z Z, Dong Y Q, et al. Phase-adjusted estimation of the number of coronavirus disease 2019 cases in Wuhan, China[J]. Cell Discovery, 2020,6(1):1-8.
doi: 10.1038/s41421-019-0132-8 |
[18] |
Wu J T, Leung K, Leung G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study[J]. Lancet, 2020,395(10225):689-697.
doi: 10.1016/S0140-6736(20)30260-9 pmid: 32014114 |
[19] |
Li Q, Guan X H, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. The New England Journal of Medicine, 2020,382(13):1199-1207.
doi: 10.1056/NEJMoa2001316 pmid: 31995857 |
[20] |
Zhao S, Zhuang Z, Ran J J, et al. The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: A data-driven correlational report[J]. Travel Medicine and Infectious Disease, 2020,33:101568.
doi: 10.1016/j.tmaid.2020.101568 pmid: 32006656 |
[21] |
Yadav S, Yadav P K. Basic reproduction rate and case fatality rate of COVID-19: Application of meta-analysis[J]. medRxiv, 2020: 2020.05.13.20100750.
doi: 10.1101/2021.02.23.21252325 pmid: 33655263 |
[22] |
Zhao Y, Wang R N, Li J P, et al. Analysis of the transmissibility change of 2019-Novel Coronavirus Pneumonia and its potential factors in China from 2019 to 2020[J]. Biomed Research International, 2020,2020:3842470.
doi: 10.1155/2020/3842470 pmid: 32461981 |
[23] |
Yue T X, Fan Z M, Fan B, et al. A new approach to modeling the fade-out threshold of coronavirus disease[J]. Science Bulletin, 2020,65(15):1225-1227.
doi: 10.1016/j.scib.2020.04.016 pmid: 32363046 |
[24] | Stedman M, Davies M, Lunt M, et al. A phased approach to unlocking during the COVID-19 pandemic-Lessons from trend analysis[J]. International Journal of Clinical Practice, 2020,e13528. doi: 10.1111/ijcp.13528. |
[25] |
Peng Z H, Song W Y, Ding Z X, et al. Linking key intervention timings to rapid declining effective reproduction number to quantify lessons against COVID-19[J]. Frontiers of Medicine, 2020. doi: 10.1007/s11684-020-0788-3.
doi: 10.1007/s11684-020-0823-4 pmid: 33098549 |
[26] |
Chen B L, Zhong H H, Ni Y Y, et al. Epidemiological trends of coronavirus disease 2019 in China[J]. medRxiv, 2020:2020.03.13.20035642.
doi: 10.1101/2021.02.23.21252325 pmid: 33655263 |
[27] | Weber A, Ianelli F, Goncalves S. Trend analysis of the COVID-19 pandemic in China and the rest of the world[J]. arXiv preprint arXiv:2003.09032, 2020. |
[28] | Li Q, Feng W, Quan Y. Trend and forecasting of the COVID-19 outbreak in China[J]. Journal of Infection, 2020,80(4):472-474. |
[29] |
Tang W M, Liao H P, Marley G, et al. The changing patterns of coronavirus disease 2019 (COVID-19) in China: A tempogeographic analysis of the severe acute respiratory syndrome coronavirus 2 epidemic[J]. Clinical Infectious Diseases, 2020,71(15):818-824.
doi: 10.1093/cid/ciaa423 pmid: 32296826 |
[30] |
Tian H Y, Liu Y H, Li Y D, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020,368(6491):638-642.
doi: 10.1126/science.abb6105 pmid: 32234804 |
[31] | Moftakhar L, Seif M, Safe M S. Exponentially increasing trend of infected patients with COVID-19 in Iran: A comparison of neural network and ARIMA forecasting models[J]. Iranian Journal of Public Health, 2020,49:92-100. |
[32] |
Ceylan Z. Estimation of COVID-19 prevalence in Italy, Spain, and France[J]. Science of the Total Environment, 2020,729:138817.
doi: 10.1016/j.scitotenv.2020.138817 |
[33] | Chimmula V K R, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks[J]. Chaos, Solitons & Fractals, 2020: 109864. |
[34] |
Iosa M, Paolucci S, Morone G. Covid-19: A dynamic analysis of fatality risk in Italy[J]. Frontiers in Medicine, 2020,7:185.
doi: 10.3389/fmed.2020.00185 pmid: 32426362 |
[35] |
Xiong Y Z, Wang Y P, Chen F, et al. Spatial statistics and influencing factors of the COVID-19 epidemic at both prefecture and county levels in Hubei province, China[J]. International Journal of Environmental Research and Public Health, 2020,17(11):3903.
doi: 10.3390/ijerph17113903 |
[36] |
Desjardins M R, Hohl A, Delmelle E M. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging clusters[J]. Applied Geography, 2020,118:102202.
doi: 10.1016/j.apgeog.2020.102202 pmid: 32287518 |
[37] |
Kang D Y, Choi H, Kim J H, et al. Spatial epidemic dynamics of the COVID-19 outbreak in China[J]. International Journal of Infectious Diseases, 2020,94:96-102.
doi: 10.1016/j.ijid.2020.03.076 pmid: 32251789 |
[38] |
Koo J R, Cook A R, Park M, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study[J]. Lancet Infectious Diseases, 2020,20(6):678-688.
doi: 10.1016/S1473-3099(20)30162-6 pmid: 32213332 |
[39] |
Khose S, Moore J X, Wang H E. Epidemiology of the 2020 pandemic of COVID-19 in the state of Texas: The first month of community spread[J]. Journal of Community Health, 2020,45(4):696-701.
doi: 10.1007/s10900-020-00854-4 pmid: 32500438 |
[40] |
Ren H Y, Zhao L, Zhang A, et al. Early forecasting of the potential risk zones of COVID-19 in China's megacities[J]. Science of the Total Environment, 2020,729:138995.
doi: 10.1016/j.scitotenv.2020.138995 |
[41] | 资源与环境信息系统国家重点实验室. "图说疫情"公众号[EB/OL]. https://mp.weixin.qq.com/s/vIIi8lClonPDbbO_Vxgdkw, 2020-01-31. |
[ State Key Laboratory of Resources and Environmental Information System. Illustration of COVID-19[EB/OL]. https://mp.weixin.qq.com/s/vIIi8lClonPDbbO_Vxgdkw, 2020-01-31.] | |
[42] |
Zhang C H, Schwartz G G. Spatial disparities in coronavirus incidence and mortality in the United States: An ecological analysis as of May 2020[J]. Journal of Rural Health, 2020,36(3):433-445.
doi: 10.1111/jrh.v36.3 |
[43] |
Jia J S, Lu X, Yuan Y, et al. Population flow drives spatio-temporal distribution of COVID-19 in China[J]. Nature, 2020,582(7812):389-394.
doi: 10.1038/s41586-020-2284-y pmid: 32349120 |
[44] |
Kraemer M U G, Yang C H, Gutierrez B, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020,368(6490):493-497.
doi: 10.1126/science.abb4218 pmid: 32213647 |
[45] |
Lai S J, Ruktanonchai N W, Zhou L C, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China[J]. Nature, 2020. doi: 10.1038/s41586-020-2293-x.
pmid: 33664439 |
[46] |
Oliver N, Lepri B, Sterly H, et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle[J]. Science Advances, 2020, 6(23):eabc0764.
doi: 10.1126/sciadv.aaz0286 pmid: 32548255 |
[47] | Baidu Map. Baidu Migrations[EB/OL]. http://qianxi.baidu.com/,2020-01-22. |
[48] | Tencent. Tencent Locations[EB/OL]. https://heat.qq.com/, 2020-01-22. |
[49] | OAG. OAG Data[EB/OL]. https://www.oag.com/, 2020-01-22. |
[50] |
Hu B S, Qiu J Y, Chen H Y, et al. First, second and potential third generation spreads of the COVID-19 epidemic in mainland China: an early exploratory study incorporating location-based service data of mobile devices[J]. International Journal of Infectious Diseases, 2020,96:489-495.
doi: 10.1016/j.ijid.2020.05.048 pmid: 32425632 |
[51] |
Mo C B, Tan D C, Mai T Y, et al. An analysis of spatiotemporal pattern for COIVD-19 in China based on space-time cube[J]. Journal of Medical Virology, 2020. doi: 10.1002/jmv.25834.
doi: 10.1002/jmv.26911 pmid: 33638460 |
[52] | 李清清, 高铭, 郑沾福, 等. 2020年1月19日至2月18日广东省COVID-19疫情的空间流行病学分析[J/OL]. 重庆医科大学学报: 1-7[2020-08-03]. https://doi.org/10.13406/j.cnki.cyxb.002586. |
[ Li Q Q, Gao M, Zheng Z F, et al. Spatial epidemiological analysis of coronavirus disease 2019 in Guangdong Province from January 19 to February 18, 2020[J/OL], Journal of Chongqing Medical University: 1-7[2020-08-03]. https://doi.org/10.13406/j.cnki.cyxb.002586. ] | |
[53] | 数字中国研究院. 数字中国研究院官方公众号[EB/OL]. https://mp.weixin.qq.com/s/QmycS6UrwdcX5TOp8ImCGw, 2020-01-31. |
[ The Academy of Digital China. Official account of ADC[EB/OL]. https://mp.weixin.qq.com/s/QmycS6UrwdcX5TOp8ImCGw, 2020-01-31.] | |
[54] | Tableau software. US COVID-19 Hotspots for Confirmed Cases[EB/OL]. https://public.tableau.com/profile/rosa.ser-eno#!/vizhome/USCovid-19HotspotsforConfirmedCases/Sheet1, 2020-04-27. |
[55] | WHO. The WHO COVID-19 situation dashboard[EB/OL]. https://covid19.who.int/, 2020-07-15. |
[56] | Centers for Disease Control and Prevention. Data Visualization[EB/OL]. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/data-visualization.htm, 2020-07-15. |
[57] | European Centre for Disease Prevention and Control(ECDC). Surveillance Atlas of Infectious Diseases[EB/OL]. http://atlas.ecdc.europa.eu/public/index.aspx,2020-07-15. |
[58] | WorldPop. WorldPop COVID-19 research and data[EB/OL]. https://www.worldpop.org/covid19, 2020-07-15. |
[59] | 靳帧, 孙桂全, 刘茂省. 网络传染病动力学建模与分析[M]. 北京: 科学出版社, 2014. |
[ Jin Z, Sun G Q, Liu M X. Modeling and analysis of network infectious disease dynamics [M]. Beijing: Science Press, 2014. ] | |
[60] | Kermack W O, Mckendrick A G. Contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1927,115(772):700-721. |
[61] |
Bai Z G. Threshold dynamics of a periodic SIR model with delay in an infected compartment[J]. Mathematical Biosciences and Engineering, 2015,12(3):555-564.
doi: 10.3934/mbe.2015.12.555 pmid: 25811548 |
[62] |
Kamenev A, Meerson B. Extinction of an infectious disease: A large fluctuation in a nonequilibrium system[J]. Physical Review E, 2008,77(6):061107.
doi: 10.1103/PhysRevE.77.061107 |
[63] |
Dearlove B, Wilson D J. Coalescent inference for infectious disease: Meta-analysis of hepatitis C[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013,368(1614):20120314.
doi: 10.1098/rstb.2012.0314 |
[64] |
Méndez V. Epidemic models with an infected-infectious period[J]. Physical Review E, 1998,57(3):3622-3624.
doi: 10.1103/PhysRevE.57.3622 |
[65] |
Kermack W O, Mckendrick A G. Contributions to the mathematical theory of epidemics-II. The problem of endemicity[J]. Bulletin of Mathematical Biology, 1991,53(1-2):57-87.
doi: 10.1007/BF02464424 pmid: 2059742 |
[66] | Dietz K. Overall population patterns in the transmission cycle of infectious disease agents[M] // Population Biology of Infectious Diseases. Berlin: Springer, 1982: 87-102. |
[67] |
Heesterbeek J A P, Metz J A J. The saturating contact rate in marriage- and epidemic models[J]. Journal of Mathematical Biology, 1993,31(5):529-539.
doi: 10.1007/BF00173891 pmid: 8336087 |
[68] |
Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model[J]. Bulletin of Mathematical Biology, 1998,60(6):1123-1148.
doi: 10.1006/S0092-8240(98)90005-2 pmid: 9866452 |
[69] | Hossain M T, Miah M M, Hossain M B. Numerical study of Kermack-Mckendrik SIR model to predict the outbreak of Ebola virus diseases using Euler and fourth order Runge-Kutta methods[J]. American Scientific Research Journal for Engineering, Technology, and Sciences, 2017,37(1):1-21. |
[70] |
Dottori M, Fabricius G. SIR model on a dynamical network and the endemic state of an infectious disease[J]. Physica A: Statistical Mechanics and its Applications, 2015,434:25-35.
doi: 10.1016/j.physa.2015.04.007 |
[71] |
Wang W, Zhao X Q. Threshold dynamics for compartmental epidemic models in periodic environments[J]. Journal of Dynamics and Differential Equations, 2008,20(3):699-717.
doi: 10.1007/s10884-008-9111-8 |
[72] |
Chinazzi M, Davis J T, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak[J]. Science, 2020,368(6489):395-400.
doi: 10.1126/science.aba9757 pmid: 32144116 |
[73] |
Balcan D, Colizza V, Goncalves B, et al. Multiscale mobility networks and the spatial spreading of infectious diseases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(51):21484-21489.
doi: 10.1073/pnas.0906910106 pmid: 20018697 |
[74] |
Balcan D, Goncalves B, Hu H, et al. Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model[J]. Journal of Computational Science, 2010,1(3):132-145.
doi: 10.1016/j.jocs.2010.07.002 |
[75] |
Zhang Q, Sun K Y, Chinazzi M, et al. Spread of Zika virus in the Americas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(22):E4334-E4343.
doi: 10.1073/pnas.1620161114 pmid: 28442561 |
[76] |
Gilbert M, Pullano G, Pinotti F, et al. Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study[J]. Lancet, 2020,395(10227):871-877.
doi: 10.1016/S0140-6736(20)30411-6 pmid: 32087820 |
[77] |
Li R Y, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)[J]. Science, 2020,368(6490):489-493.
doi: 10.1126/science.abb3221 pmid: 32179701 |
[78] |
Kissler S M, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period[J]. Science, 2020,368(6493):860-868.
doi: 10.1126/science.abb5793 pmid: 32291278 |
[79] | 冯明翔, 方志祥, 路雄博, 等. 交通分析区尺度上的新型冠状病毒肺炎时空扩散推估方法:以武汉市为例[J/OL]. 武汉大学学报·信息科学版: 1-12[2020-06-03]. https://doi.org/10.13203/j.whugis20200141. |
[ Feng M X, Fang Z X, Lu X B, et al. Traffic analysis zone-based epidemic estimation approach of COVID-19 based on mobile phone data:an Example of Wuhan[J/OL]. Geomatics and Information Science of Wuhan University: 1-12 [2020-06-03].https://doi.org/10.13203/j.whugis20200141. ] | |
[80] | 夏吉喆, 周颖, 李珍, 等. 城市时空大数据驱动的新型冠状病毒传播风险评估——以粤港澳大湾区为例[J]. 测绘学报, 2020,49(6):671-680. |
[ Xia J Z, Zhou Y, Li Z, et al. COVID-19 risk assessment driven by urban spatiotemporal big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Geodaetica et Cartographica Sinica, 2020,49(6):671-680. ] | |
[81] |
Fan C J, Cai T M, Gai Z Y, et al. The relationship between the migrant population's migration network and the risk of COVID-19 transmission in China-Empirical analysis and prediction in prefecture-level cities[J]. International Journal of Environmental Research and Public Health, 2020,17(8):2630.
doi: 10.3390/ijerph17082630 |
[82] |
Linka K, Peirlinck M, Costabal F S, et al. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2020: 1-8. doi: 10.1080/10255842.2020.1759560.
doi: 10.1080/10255842.2021.1875219 pmid: 33492988 |
[83] |
Hellewell J, Abbott S, Gimma A, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts[J]. Lancet Global Health, 2020,8(4):E488-E496.
doi: 10.1016/S2214-109X(20)30074-7 pmid: 32119825 |
[84] |
Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing[J]. Science, 2020, 368(6491):eabb6936.
doi: 10.1126/science.368.6498.1420 pmid: 32587004 |
[85] |
Fowler J H, Hill S J, Obradovich N, et al. The effect of stay-at-home orders on COVID-19 cases and fatalities in the United States[J]. medRxiv, 2020: 2020.04.13.20063628.
pmid: 33655263 |
[86] |
Zhang J J, Litvinova M, Liang Y X, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China[J]. Science, 2020,368(6498):1481-1486.
doi: 10.1126/science.abb8001 pmid: 32350060 |
[87] |
Wu H L, Huang J, Zhang C J P,et al. Facemask shortage and the novel coronavirus disease (COVID-19) outbreak: Reflections on public health measures[J]. EClinicalMedicine, 2020,21:100329.
doi: 10.1016/j.eclinm.2020.100329 pmid: 32292898 |
[88] |
Moghadas S M, Shoukat A, Fitzpatrick M C, et al. Projecting hospital utilization during the COVID-19 outbreaks in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(16):9122-9126.
doi: 10.1073/pnas.2004064117 pmid: 32245814 |
[89] | Wells C R, Fitzpatrick M C, Sah P, et al. Projecting the demand for ventilators at the peak of the COVID-19 outbreak in the USA[J]. The Lancet Infectious Diseases, 2020, S1473-3099(20):30315-7. |
[90] |
Chatterjee K, Chatterjee K, Kumar A, et al. Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model[J]. Medical Journal Armed Forces India, 2020,76(2):147-155.
doi: 10.1016/j.mjafi.2020.03.022 |
[91] |
Verhagen M D, Brazel D M, Dowd J B, et al. Forecasting spatial, socioeconomic and demographic variation in COVID-19 health care demand in England and Wales[J]. BMC Medicine, 2020,18(1):1-11.
doi: 10.1186/s12916-019-1443-1 pmid: 31898501 |
[92] | 葛洪磊, 刘南. 重大传染病疫情演化情境下应急物资配置决策建模分析:以新冠肺炎疫情为例[J/OL]. 管理工程学报: 1-9[2020-08-03]. https://doi.org/10.13587/j.cnki.jieem.2020.03.022. |
[ Ge H L, Liu N. Modeling of emergency materials allocation decision-making problems based on the evolution scenarios of serious infectious diseases: A case of COVID-19[J/OL]. Journal of Industrial Engineering and Engineering Management: 1-9 [2020-08-03]. https://doi.org/10.13587/j.cnki.jieem.2020.03.022. ] | |
[93] | 王霞, 唐三一, 陈勇, 等. 新型冠状病毒肺炎疫情下武汉及周边地区何时复工?数据驱动的网络模型分析[J]. 中国科学:数学, 2020,50(7):969-978. |
[ Wang X, Tang S Y, Chen Y, et al. When will be the resumption of work in Wuhan and its surrounding areas during COVID-19 epidemic? A data-driven network modeling analysis[J]. Scientia Sinica Mathematica, 2020,50(7):969-978 ] | |
[94] | Liu Y, Gu Z L, Xia S, et al. What are the underlying transmission patterns of COVID-19 outbreak? An age-specific social contact characterization[J]. EClinical Medicine, 2020: 100354. |
[95] |
Tian T, Tan J B, Jiang Y K, et al. Evaluate the risk of resumption of business for the states of New York, New Jersey and Connecticut via a pre-symptomatic and asymptomatic transmission model of COVID-19[J]. medRxiv, 2020:2020.05.16.20103747.
doi: 10.1101/2021.02.23.21252325 pmid: 33655263 |
[96] |
Prem K, Liu Y, Russell T W, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study[J]. Lancet Public Health, 2020,5(5):E261-E270.
doi: 10.1016/S2468-2667(20)30073-6 pmid: 32220655 |
[97] | 郑宇军, 吴晨昕, 陈恩富, 等. 新冠肺炎疫情条件下的企业复工复产优化规划方法[J/OL]. 运筹学学报:1-15 [ 2020- 08- 03]. http://kns.cnki.net/kcms/detail/31.1732.O1.20200416.0857.004.html. |
[ Zheng Y J, Wu C Q, Chen E F, et al. An optimization method for production resumption planning under COVID-19 epidemic[J/OL]. Operations Research Transactions: 1-15[ 2020- 08- 03], http://kns.cnki.net/kcms/detail/31.1732.O1.20200416.0857.004.html] | |
[98] |
Ge Y, Zhang W B, Wang J H, et al. Effect of different resumption strategies to flatten the potential COVID-19 outbreaks amid society reopens: A modeling study[J]. medRxiv, 2020:2020.06.25.20140418.
doi: 10.1101/2021.02.23.21252325 pmid: 33655263 |
[99] |
Wang W, Tang J M, Wei F Q. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China[J]. Journal of Medical Virology, 2020,92(4):441-447.
doi: 10.1002/jmv.25689 pmid: 31994742 |
[100] |
Lighter J, Phillips M, Hochman S, et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission[J]. Clinical Infectious Diseases, 2020,71(15):896-897.
doi: 10.1093/cid/ciaa415 pmid: 32271368 |
[101] |
Dowd J B, Andriano L, Brazel D M, et al. Demographic science aids in understanding the spread and fatality rates of COVID-19[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(18):9696-9698.
doi: 10.1073/pnas.2004911117 pmid: 32300018 |
[102] |
Deng X W, Yang J, Wang W, et al. Case fatality risk of the first pandemic wave of novel coronavirus disease 2019 (COVID-19) in China[J]. Clinical Infectious Diseases, 2020. doi: 10.1093/cid/ciaa578.
pmid: 33624795 |
[103] |
Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide association study of severe Covid-19 with respiratory failure[J]. The New England Journal of Medicine, 2020. doi: 10.1056/NEJMoa2020283.
doi: 10.1056/NEJMoa2026982 pmid: 33657295 |
[104] | Sajadi M M, Habibzadeh P, Vintzileos A, et al. Temperature and latitude analysis to predict potential spread and seasonality for COVID-19[J]. Available at SSRN: http://dx.doi.org/10.2139/ssrn.3550308, 2020. |
[105] |
Paez A, Lopez F A, Menezes T, et al. A spatio-temporal analysis of the environmental correlates of COVID-19 incidence in Spain[J]. Geographical Analysis, 2020. doi: 10.1111/gean.12241.
doi: 10.1111/j.1538-4632.1969.tb00605.x pmid: 11614509 |
[106] |
Wu X, Nethery R C, Sabath B M, et al. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study[J]. medRxiv, 2020:2020.04.05.20054502
pmid: 33655263 |
[107] | Pansini R, Fornacca D. Initial evidence of higher morbidity and mortality due to SARS-CoV-2 in regions with lower air quality[J]. medRxiv, 2020:2020.04.04.20053595. |
[108] |
Soucy J P R, Sturrock S L, Berry I, et al. Estimating effects of physical distancing on the COVID-19 pandemic using an urban mobility index[J]. medRxiv, 2020: 2020.04.05.20054288.
doi: 10.1101/2021.02.23.21252325 pmid: 33655263 |
[109] |
Zhu Y J, Xie J G, Huang F M, et al. The mediating effect of air quality on the association between human mobility and COVID-19 infection in China[J]. Environmental Research, 2020,189:109911.
doi: 10.1016/j.envres.2020.109911 pmid: 32678740 |
[110] |
Yancy C W. COVID-19 and African Americans[J]. Jama, 2020,323(19):1891-1892.
doi: 10.1001/jama.2020.6548 pmid: 32293639 |
[111] |
Wadhera R K, Wadhera P, Gaba P, et al. Variation in COVID-19 hospitalizations and deaths across New York city boroughs[J]. Jama, 2020,323(21):2192-2195.
doi: 10.1001/jama.2020.7197 pmid: 32347898 |
[112] | 李欣, 周林, 贾涛, 等. 城市因素对COVID-19疫情的影响——以武汉市为例[J]. 武汉大学学报·信息科学版, 2020,45(6):826-835. |
[ Li X, Zhou L, Jia T, et al. Influence of urban factors on the COVID-19 epidemic: A case study of Wuhan city[J]. Geomatics and Information Science of Wuhan University, 2020,45(6):826-835. ] | |
[113] | Sinha I P, Lee A R, Bennett D, et al. Child poverty, food insecurity, and respiratory health during the COVID-19 pandemic[J]. The Lancet Respiratory Medicine, 2020,S22132600(20):30280-0. |
[114] | Alipio M. Do socio-economic indicators associate with COVID-2019 cases? Findings from a Philippine study[J]. Available at SSRN: http://dx.doi.org/10.2139/ssrn.3573353, 2020. |
[115] |
Oronce C I, Scannell C A, Kawachi I, et al. Association between state-level income inequality and COVID-19 cases and mortality in the USA[J]. Journal of General Internal Medicine, 2020: 1-3, doi: 10.1007/s11606-020-05971-3.
doi: 10.1007/s11606-007-0458-z pmid: 18095035 |
[116] |
Millett G A, Jones A T, Benkeser D, et al. Assessing differential impacts of COVID-19 on black communities[J]. Annals of Epidemiology, 2020,47:37-44.
doi: 10.1016/j.annepidem.2020.05.003 pmid: 32419766 |
[117] |
Du Z W, Wang L, Cauchemez S, et al. Risk for transportation of coronavirus disease from Wuhan to other cities in China[J]. Emerging Infectious Diseases, 2020,26(5):1049-1052.
doi: 10.3201/eid2605.200146 pmid: 32053479 |
[118] | Pan Y X, Darzi A, Kabiri A, et al. Quantifying human mobility behavior changes in response to non-pharmaceutical interventions during the COVID-19 outbreak in the United States[J]. arXiv preprint arXiv:2005.01224, 2020. |
[119] | Pullano G, Pinotti F, Valdano E, et al. Novel coronavirus (2019-nCoV) early-stage importation risk to Europe, January 2020[J]. Eurosurveillance, 2020,25(4):2-6. |
[120] |
Kim S J, Bostwick W. Social Vulnerability and racial inequality in COVID-19 deaths in Chicago[J]. Health Education & Behavior, 2020,47(4):509-513.
doi: 10.1177/1090198120929677 pmid: 32436405 |
[121] | De Kadt J, Graeme G, Hamann C, et al. Mapping vulnerability to COVID-19 in Gauteng[EB/OL]. https://www.gcro.ac.za/outputs/map-of-the-month/detail/mapping-vulnerability-to-covid-19/. 2020-03-20. |
[122] |
Cabore J W, Karamagi H C, Kipruto H, et al. The potential effects of widespread community transmission of SARS-CoV-2 infection in the World Health Organization African Region: a predictive model[J]. BMJ Global Health, 2020,5(5):e002647.
doi: 10.1136/bmjgh-2020-002647 pmid: 32451366 |
[123] |
Luo M, Guo L X, Yu M Z, et al. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public: A systematic review and meta-analysis[J]. Psychiatry Research, 2020,291:113190.
doi: 10.1016/j.psychres.2020.113190 pmid: 32563745 |
[124] | 钱俊, 张波婷, 邱伟芬, 等. 新冠肺炎患者心理状况调查及心理干预效果[J/OL]. 中国健康心理学杂志:1-8 [ 2020- 08- 03]. http://kns.cnki.net/kcms/detail/11.5257.R.20200628.1852.024.html . |
[ Qian J, Zhang B T, Qiu W F, et al. Psychological crisis intervention on the psychological status of 2019-ncov patients[J/OL]. China Journal of Health Psychology:1-8[ 2020- 08- 03]. http://kns.cnki.net/kcms/detail/11.5257.R.20200628.1852.024.html] | |
[125] |
Elbay R Y, Kurtulmuş A, Arpacıoğlu S, et al. Depression, anxiety, stress levels of physicians and associated factors in Covid-19 pandemics[J]. Psychiatry Research, 2020,290:113130.
doi: 10.1016/j.psychres.2020.113130 pmid: 32497969 |
[126] |
Mandal I, Pal S. COVID-19 pandemic persuaded lockdown effects on environment over stone quarrying and crushing areas[J]. Science of the Total Environment, 2020,732:139281.
doi: 10.1016/j.scitotenv.2020.139281 |
[127] |
Bao R, Zhang A C. Does lockdown reduce air pollution? Evidence from 44 cities in northern China[J]. Science of the Total Environment, 2020,731:139052.
doi: 10.1016/j.scitotenv.2020.139052 |
[128] | Mahato S, Pal S, Ghosh K G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India[J]. Science of the Total Environment, 2020,730:23. |
[129] |
Otmani A, Benchrif A, Tahri M, et al. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Sale City (Morocco)[J]. Science of the Total Environment, 2020,735:139541-139541.
doi: 10.1016/j.scitotenv.2020.139541 |
[130] |
Wang Q, Su M. A preliminary assessment of the impact of COVID-19 on environment: A case study of China[J]. Science of the Total Environment, 2020,728:138915.
doi: 10.1016/j.scitotenv.2020.138915 |
[131] |
Liu Q, Sha D X, Liu W, et al. Spatiotemporal patterns of COVID-19 impact on human activities and environment in mainland China using nighttime light and air quality data[J]. Remote Sensing, 2020,12:576.
doi: 10.3390/rs12030576 |
[132] |
Sicard P, De Marco A, Agathokleous E, et al. Amplified ozone pollution in cities during the COVID-19 lockdown[J]. Science of the Total Environment, 2020,735:139542.
doi: 10.1016/j.scitotenv.2020.139542 |
[133] |
Lal P, Kumar A, Kumar S, et al. The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment[J]. Science of the Total Environment, 2020,732:139297.
doi: 10.1016/j.scitotenv.2020.139297 |
[134] |
Li L, Li Q, Huang L, et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation[J]. Science of the Total Environment, 2020,732:139282.
doi: 10.1016/j.scitotenv.2020.139282 |
[135] |
Kerimray A, Baimatova N, Ibragimova O P, et al. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan[J]. Science of the Total Environment, 2020,730:139179.
doi: 10.1016/j.scitotenv.2020.139179 |
[136] |
Braga F, Scarpa G M, Brando V E, et al. COVID-19 lockdown measures reveal human impact on water transparency in the Venice Lagoon[J]. Science of the Total Environment, 2020,736:139612.
doi: 10.1016/j.scitotenv.2020.139612 |
[137] |
Lokhandwala S, Gautam P. Indirect impact of COVID-19 on environment: A brief study in Indian context[J]. Environmental Research, 2020,188:109807.
doi: 10.1016/j.envres.2020.109807 pmid: 32574854 |
[138] |
Cheval S, Mihai Adamescu C, Georgiadis T, et al. Observed and potential impacts of the COVID-19 pandemic on the environment[J]. International Journal of Environmental Research and Public Health, 2020,17(11):4140.
doi: 10.3390/ijerph17114140 |
[139] |
Biskanaki F, Rallis F, Andreou E, et al. Social-economic impact of COVID-19 pandemic on aesthetic centers in Greece[J]. Journal of Cosmetic Dermatology, 2020. doi: 10.1111/jocd.13517.
doi: 10.1111/jocd.14022 pmid: 33626241 |
[140] | Casero-Ripolles A. Impact of Covid-19 on the media system. Communicative and democratic consequences of news consumption during the outbreak[J]. Profesional de la Informacion, 2020,29(2):e290223. |
[141] | Chen H L, Huang X, Li Z Y. A content analysis of Chinese news coverage on COVID-19 and tourism[J]. Current Issues in Tourism, 2020: 1-8. doi: 10.1080/13683500.2020.1763269. |
[142] |
Corbet S, Larkin C, Lucey B. The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies[J]. Finance Research Letters, 2020,35:101554.
doi: 10.1016/j.frl.2020.101554 |
[143] |
Zaremba A, Kizys R, Aharon D Y, et al. Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe[J]. Finance Research Letters, 2020,35:101597.
doi: 10.1016/j.frl.2020.101597 pmid: 32550842 |
[144] |
Iqbal N, Fareed Z, Shahzad F, et al. The nexus between COVID-19, temperature and exchange rate in Wuhan city: New findings from partial and multiple wavelet coherence[J]. Science of the Total Environment, 2020,729:138916.
doi: 10.1016/j.scitotenv.2020.138916 |
[145] |
Luo S W, Tsang K P. China and world output impact of the Hubei lockdown during the coronavirus outbreak[J]. Contemporary Economic Policy, 2020. doi: 10.1111/coep.12482.
doi: 10.1111/j.1465-7287.1994.tb00424.x pmid: 11659976 |
[146] |
Guan D B, Wang D P, Hallegatte S, et al. Global supply-chain effects of COVID-19 control measures[J]. Nature Human Behaviour, 2020,4(6):577-587.
doi: 10.1038/s41562-020-0896-8 pmid: 32493967 |
[147] |
Dignum F, Dignum V, Davidsson P, et al. Analysing the combined health, social and economic impacts of the corovanvirus pandemic using agent-based social simulation[J]. Minds and Machines, 2020,30(2):177-194.
doi: 10.1007/s11023-020-09527-6 |
[1] | YING Shen, DOU Xiaoying, XU Yajie, SU Junru, LI Lin. Visualization of the Epidemic Situation of COVID-19 [J]. Journal of Geo-information Science, 2021, 23(2): 211-221. |
[2] | LIU Yaxi, SONG Ci, LIU Qiyong, ZHANG Zhixin, WANG Xi, MA Jia, CHEN Xiao, PEI Tao. Spatial-temporal Characteristics of COVID-19 in Chongqing and Its Relationship with Human Mobility [J]. Journal of Geo-information Science, 2021, 23(2): 222-235. |
[3] | XIE Conghui, WU Shixin, ZHANG Chen, SUN Wentao, HE Haifang, PEI Tao, LUO Geping. Analysis of Time Series Features of COVID-19 in Various Countries based on Pedigree Clustering [J]. Journal of Geo-information Science, 2021, 23(2): 236-245. |
[4] | WU Xibo, LAI Changqiang, GE Zhizhuan. Study on Agglomeration, Evolution and Autocorrelation Effects of Spatio-temporal of COVID-19 Epidemic in Prefecture-level Cities in China during Government's Strict Control Period [J]. Journal of Geo-information Science, 2021, 23(2): 246-258. |
[5] | BI Jia, WANG Xianmin, HU Yueyi, LUO Menghan, ZHANG Junhua, HU Fengchang, DING Ziyang. A Method for Dynamic Risk Assessment and Prediction of Public Health Emergencies based on an Improved SEIR Model: Novel Coronavirus COVID-19 in Ten European Countries [J]. Journal of Geo-information Science, 2021, 23(2): 259-273. |
[6] | WEI Yuanyuan, JIANG Nan, CHEN Yunhai, LI Xiang, YANG Zhenkai. Modeling and Application of Epidemic Risk Assessment Considering Spatial Interaction of Spatial-temporal Objects [J]. Journal of Geo-information Science, 2021, 23(2): 274-283. |
[7] | FANG Yunhao, GU Kangkang. Exploration on Geospatial Risk Assessment in China based on Multiple Data: A Case Study of COVID-19 Data from January 1 to April 11, 2020 [J]. Journal of Geo-information Science, 2021, 23(2): 284-296. |
[8] | CAO Zhonghao, ZHANG Jianqin, YANG Mu, JIA Lipeng, DENG Shaocun. The City Agent Model of COVID-19 based on GIS and Application: A Case Study of Guangzhou [J]. Journal of Geo-information Science, 2021, 23(2): 297-306. |
[9] | DU Yixian, XU Jiapeng, ZHONG Linying, HOU Yingxu, SHEN Jie. Analysis and Visualization of Multi-dimensional Characteristics of Network Public Opinion Situation and Sentiment: Taking COVID-19 Epidemic as an Example [J]. Journal of Geo-information Science, 2021, 23(2): 318-330. |
[10] | HAN Keke, XING Ziyao, LIU Zhe, LIU Junming, ZHANG Xiaodong. Research on Public Opinion Analysis Methods in Major Public Health Events: Take COVID-19 Epidemic as an Example [J]. Journal of Geo-information Science, 2021, 23(2): 331-340. |
[11] | ZHANG Chen, MA Xiangyuan, ZHOU Yang, GUO Renzhong. Analysis of Public Opinion Evolution in COVID-19 Pandemic from a Perspective of Sentiment Variation [J]. Journal of Geo-information Science, 2021, 23(2): 341-350. |
[12] | XUE Haonan, ZHANG Xueying, WU Mingguang, CAO Tianyang. The Analysis Method of Changes in "Global-China" International Relations during the COVID-19 Event based on News Data [J]. Journal of Geo-information Science, 2021, 23(2): 351-363. |
[13] | GE Yong, LIU Mengxiao, HU Shan, REN Zhoupeng. The Application and Prospect of Spatiotemporal Statistics in Poverty Research [J]. Journal of Geo-information Science, 2021, 23(1): 58-74. |
[14] | DONG Hesong, LI Renjie, LI Jianming, LI Shuai. Study on Urban Spatiotemporal Expansion Pattern of Three First-class Urban Agglomerations in China Derived from Integrated DMSP-OLS and NPP-VIIRS Nighttime Light Data [J]. Journal of Geo-information Science, 2020, 22(5): 1161-1174. |
[15] | NIE Pin, LIANG Ming, LI Yujie, YOU Xinyan, SUN Xiaojuan. Spatiotemporal Model Analysis of Land Change Process based on Nearest Spatiotemporal Distance [J]. Journal of Geo-information Science, 2020, 22(3): 628-637. |
|