Journal of Geo-information Science ›› 2016, Vol. 18 ›› Issue (5): 578-589.doi: 10.3724/SP.J.1047.2016.00578
• Orginal Article • Next Articles
LUO Jiancheng1(), WU Tianjun2,*(
), XIA Liegang3
Received:
2016-01-04
Revised:
2016-03-11
Online:
2016-05-10
Published:
2016-05-10
Contact:
WU Tianjun
E-mail:luojc@radi.ac.cn;wutianjun1986@163.com
LUO Jiancheng,WU Tianjun,XIA Liegang. The Theory and Calculation of Spatial-spectral Cognition of Remote Sensing[J].Journal of Geo-information Science, 2016, 18(5): 578-589.DOI:10.3724/SP.J.1047.2016.00578
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The key technologies and their existing difficulties they have in the stage of “extracting spatial maps based on clustering pixels’ spectrum”"
关键技术 | 常用实现算法 | 存在问题与难点 | 发展趋势 |
---|---|---|---|
分割 | 基于边缘、区域(阈值、图论、能量泛函)的多种分割算法 | 一般的分割算法对地物复杂多变的遥感影像适用性较低,且数据量巨大的高分影像使分割效率大幅下降,如何提升分割的效率 | 发展复杂环境下高分辨率影像的多尺度快速聚合技术(多尺度:大数据综合处理) |
均值漂移、分水岭等多尺度分割算法 | 如何设置合适的尺度集来合理地表达地物的异尺度特征,实现成功抽取对象的目标[ | ||
聚类、分类 | Kmeans、ISODATA等非监督分类算法的聚类,基于SVM、神经网络、决策树、随机森林等监督分类算法的像元级分类或对象级分类 | 像元级分类造成的椒盐噪声的影响;对象级分类受分割算法问题的影响,存在对象分离不合理的问题;对象合并规则的设定 | |
人工矢量编辑 | 目视勾画 | 矢量编辑工具的智能化程度,减少人工操作量 |
Tab. 2
The key technologies and their existing difficulties in the stage of “coordinating spatial-spectral features”"
关键技术 | 常用实现算法 | 存在问题与难点 | 发展趋势 |
---|---|---|---|
特征分析 | 光谱、空间、时间、地域等多源“图-谱”特征的提取与优选算法 | 地物特征的计算具有不确定性,造成后续的分类存在一定的错分率 | ① 构建“影像-结构-演化”紧致结构的多特征表达模型(多特征:异构时空特征表达) ② 建立高空间、高光谱与高时间分辨率大数据协同计算(多维度:多源数据协同处理) |
多时相获取的遥感数据是非平稳信号,地物特征具有不一致性,当协同时序特征时,需对数据进行有有效、可靠的滤波去噪、几何配准、辐射校正等一致性预处理 | |||
分类 | SVM、神经网络、决策树、随机森林等监督分类算法以及自训练算法、生成模型、图论方法、多视角算法等半监督分类算法 | 地物外在特征不能描述其本质特征,典型特征难以确定,限制了分类的精细度(即地物可分性和分类精确性)[ | |
训练样本的采集是费时费力的步骤,如何在少量样本或无样本条件下实现高精度的分类、提升分类的自动化与智能化程度[ |
Tab. 3
The key technologies and their existing difficulties in the stage of “understanding attributes through the recognition of known diagram”"
关键技术 | 常用实现算法 | 存在问题与难点 | 发展趋势 |
---|---|---|---|
传统地物识别技术 | 分割、特征提取、分类等算法 | 同 | ① 建立波谱、视觉、环境和空间知识的逐步融合模型(多知识:遥感与GIS一体化) ② 发展“谱相”及“图形”间螺旋式认知的自适应计算模型(多模型:流程化、自动化) |
迁移学习 | 实例迁移、特征迁移、参数迁移、关系知识迁移等算法 | 知识的形式化以及如何在不同时间、空间、尺度的先验知识中进行去伪存真以及与任务的关联 | |
GIS空间分析 | 空间关系分析、叠置分析、网络分析、缓冲分析、地统计分析等算法 | GIS数据与所需提取遥感信息的关联分析,以及各种GIS空间分析方法中存在的限制问题 | |
语义推理 | 特征编码或表达(视觉词袋)、主题模型(概率潜语义分析pLSA、潜在狄利克雷分析LDA)、深度特征学习等算法 | 底层特征与高层语义间的鸿沟[ |
Tab. 4
The form, calculation and expression of knowledge in the spatial-spectral cognition of remote sensing"
来源 | 形态 | 表达 | 层次 | 计算 | 存储 | 迁移 | 应用 | |
---|---|---|---|---|---|---|---|---|
遥感知识 | 视觉知识 | 影像(对象)特征:色调、几何形状、纹理等波谱和和空间形态特征等 | 低 | 图像处理统计 | 对象表达特征库(表) | 特征迁移 | 由谱聚图 | |
参数知识 | 影像参数:成像时间、角度、传感器性能等 | 低 | 查询查阅 | 参数文档 | 参数迁移 | |||
地域知识 | 波谱知识 | 地物波谱库、纯端元地物样本库等 | 中 | 采集测量 | 波谱库(表) | 特征迁移 | 由图聚图、 图谱协同 | |
环境知识 | 坡度、坡向等DEM高程相关信息;温度、湿度等土地资源信息; | 中 | 采集测量 经验总结 | 带有环境特征的栅格/矢量图斑、If… Then…规则 | 特征/关系知识迁移 | |||
解译知识 | 模型知识 | 物理量反演模型、专题指数计算模型、定理分析模型、分类体系等 | 高 | 实验分析 模型解算 | 公式、文档 | 参数迁移 | 图谱协同 | |
物候知识 | 作物生长演变地学规律(季相变化物候特征)、景观格局演变规律等 | 高 | 时序分析 | 特征变化曲线 | 参数迁移 | |||
空间知识 | 空间分布 | 地类的地理空间分布:土地利用/覆盖解译图的图斑、空间样本位置库 | 高 | 目视/机器解译 | 带有空间位置和地类属性的栅格/矢量图斑 | 关系知识迁移 | ||
空间关系 | 阴影等相邻、相交、包含、方向等空间关系/格局知识 | 高 | GIS 空间分析 | 语义网络、拓扑 | 关系知识迁移 |
[1] | 周成虎. 遥感影像地学理解与分析[M].北京:科学出版社,1999. |
[ Zhou C H.Geo-understanding and analysis of remote sensing image[M]. Beijing: Science Press, 1999. ] | |
[2] |
Crick F.The astonishing hypothesis: the scientific search for the soul[J]. The Journal of Nervous and Mental Disease, 1996,184(6):384.
doi: 10.1001/jama.1994.03520070087050. |
[3] |
Hubel D H, Wiesel T N.Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962,160(1):106.
doi: 10.1113/jphysiol.1962.sp006837 pmid: 14449617 |
[4] | 寿天德. 视觉信息处理的脑机制(第2版)[M].合肥:中国科学技术大学出版社,2010. |
[ Shou T D.The brain mechanism of visual information processing (the second edition)[M]. Hefei: University of Science & Technology China Press, 2010. ] | |
[5] | 黄凯奇,谭铁牛.视觉认知计算模型综述[J].模式识别与人工智能,2013,26(10):951-958. |
[ Huang K Q, Tan T N.Review on computational model for vision[J]. Pattern Recognition and Artificial Intelligence, 2013,26(10):951-958. ] | |
[6] | Marr D.A computational investigation into the human representation and processing of visual information[M]. San Francisco, CA: W. H. Freeman and Company, 1982. |
[7] |
Konen C S, Kastner S.Two hierarchically organized neural systems for object information in human visual cortex[J]. Nature Neuroscience, 2008,11(2):224-231.
doi: 10.1038/nn2036 pmid: 18193041 |
[8] |
Karklin Y, Lewicki M S.Emergence of complex cell properties by learning to generalize in natural scenes[J]. Nature, 2009,457(7225):83-86.
doi: 10.1038/nature07481 pmid: 19020501 |
[9] |
Li N, Dicarlo J J.Unsupervised natural experience rapidly alters invariant object representation in visual cortex[J]. Science, 2008,321(5895):1502-1507.
doi: 10.1126/science.1160028 pmid: 18787171 |
[10] |
Hirabayashi T, Takeuchi D, Tamura K, et al.Microcircuits for hierarchical elaboration of object coding across primate temporal areas[J]. Science, 2013,341(6142):191-195.
doi: 10.1126/science.1236927 pmid: 23846902 |
[11] |
Riesenhuber M, Poggio T.Hierarchical models of object recognition in cortex[J]. Nature Neuroscience, 1999,2(11):1019-1025.
pmid: 328800326597506077310065207529222322221052634381960969757863001613 |
[12] |
Tanaka K.Inferotemporal cortex and object vision[J]. Annual Review of Neuroscience, 1996,19(1):109-139.
doi: 10.1146/annurev.ne.19.030196.000545 pmid: 8833438 |
[13] |
Hinton G E.Learning to represent visual input[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010,365(1537):177-184.
doi: 10.1098/rstb.2009.0200 pmid: 20008395 |
[14] | Bengio Y, Lamblin P, Popovici D, et al.Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007,19:153. |
[15] |
Bar M.The proactive brain: using analogies and associations to generate predictions[J]. Trends in Cognitive Sciences, 2007,11(7):280-289.
doi: 10.1016/j.tics.2007.05.005 |
[16] |
Engel A K, Fries P, Singer W.Dynamic predictions: oscillations and synchrony in top-down processing[J]. Nature Reviews Neuroscience, 2001,2(10):704-716.
doi: 10.1038/35094565 pmid: 11584308 |
[17] |
Melloni L, van Leeuwen S, Alink A, et al. Interaction between bottom-up saliency and top-down control: how saliency maps are created in the human brain[J]. Cerebral Cortex, 2012,22(12):2943-2952.
doi: 10.1093/cercor/bhr384 pmid: 22250291 |
[18] | Navalpakkam V, Itti L.An integrated model of top-down and bottom-up attention for optimizing detection speed[C]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006:2049-2056. |
[19] |
Friston K.A theory of cortical responses[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005,360(1456):815-836.
doi: 10.1098/rstb.2005.1622 |
[20] |
Kveraga K, Ghuman A S, Bar M.Top-down predictions in the cognitive brain[J]. Brain and cognition, 2007,65(2):145-168.
doi: 10.1016/j.bandc.2007.06.007 |
[21] | Iounousse J, Er-Raki S, Chehouani H.Using an unsupervised approach of probabilistic neural network (PNN) for land use classification from multitemporal satellite images[J]. Applied Soft Computing, 2015,30:1-13. |
[22] |
Demir B, Erturk S.Clustering-based extraction of border training patterns for accurate SVM classification of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2009,6(4):840-844.
doi: 10.1109/LGRS.2009.2026656 |
[23] |
Knight A, Tindall D, Wilson B.A multitemporal multiple density slice method for wetland mapping across the state of Queensland, Australia[J]. International Journal of Remote Sensing, 2009,30(13):3365-3392.
doi: 10.1080/01431160802562180 |
[24] |
Giada S, De Groeve T, Ehrlich D, et al.Information extraction from very high resolution satellite imagery over Lukole refugee camp, Tanzania[J]. International Journal of Remote Sensing, 2003,24(22):4251-4266.
doi: 10.1080/0143116021000035021 |
[25] | Song M, Civco D, Hurd J.A competitive pixel-object approach for land cover classification[J]. International Journal of Remote Sensing, 2005,26(22):4981-4997. |
[26] |
Zhou Y, Qiu F.Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,101:221-232.
doi: 10.1016/j.isprsjprs.2014.12.013 |
[27] | Li X, Shao G.Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern USA[J]. Remote Sensing, 2014,6(11):11372-11390. |
[28] |
Voltersen M, Berger C, Hese S, et al.Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level[J]. Remote Sensing of Environment, 2014,154:192-201.
doi: 10.1016/j.rse.2014.08.024 |
[29] |
Blaschke T.Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(1):2-16.
doi: 10.1016/j.isprsjprs.2009.06.004 |
[30] |
宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5.
doi: 10.11834/jrs.20060101 |
[ Gong P, Li X, Xu B.Interpretation theory and application method development for information extraction from high resolution remotely sensed data[J]. Journal of Remote Sensing, 2006,10(1):1-5. ]
doi: 10.11834/jrs.20060101 |
|
[31] |
明冬萍,骆剑承,沈占锋,等.高分辨率遥感影像信息提取与目标识别技术研究[J]. 测绘科学, 2005,30(3):18-20.
doi: 10.3771/j.issn.1009-2307.2005.03.004 |
[ Ming D P, Luo J C, Shen Z F, et al.Research on information extraction and target recognition from high resolution remote sensing image[J]. Science of Surveying and Mapping, 2005,30(3):18-20. ]
doi: 10.3771/j.issn.1009-2307.2005.03.004 |
|
[32] | Liang S.Quantitative remote sensing of land surfaces[M]. New Jersey: John Wiley & Sons, 2005. |
[33] |
Li X, Strahler A H.Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992,30(2):276-292.
doi: 10.1109/36.134078 |
[34] | Jupp D L, Strahler A H.A hotspot model for leaf canopies[J]. Remote Sensing of Environment, 1991,38(3):193-210. |
[35] |
Nilson T, Kuusk A.A reflectance model for the homogeneous plant canopy and its inversion[J]. Remote Sensing of Environment, 1989,27(2):157-167.
doi: 10.1016/0034-4257(89)90015-1 |
[36] | 童庆禧,张兵,郑兰芬.高光谱遥感:原理,技术与应用[M].北京:高等教育出版社,2006. |
[ Tong Q X, Zhang B, Zhen L F.Hyperspectral remote sensing: principle, technology and application[M]. Beijing: Higher Education Press, 2006. ] | |
[37] | 李小文,王绵地.植被光学遥感模型与植被结构参数化[M].北京:科学出版社,1995. |
[ Li X W, Wang J D.Optical remote sensing model of vegetation and structure parameterization of vegetation[M]. Beijing: Science Press, 1995. ] | |
[38] | 李小文. 地球表面时空多变要素的定量遥感项目综述[J].地球科学进展,2006,21(8):771-780. |
[ Li X W.Review of the project of quantitative remote sensing of major factors for spatial-temporal heterogeneity on the land surface[J]. Advances in Earth Science, 2006,21(8):771-780. ] | |
[39] | 陈述彭. 地学信息图谱探索研究[M].北京:科学出版社,2001. |
[ Chen S P.Exploratory research on geo-informatic Tupu[M]. Beijing: Science Press, 2001. ] | |
[40] | 陈述彭,岳天祥,励惠国.地学信息图谱研究及其应用[J].地理研究,2000,19(4):337-343. |
[ Chen S P, Yue T X, Li H G.Studies on geo-informatic Tupu and its application[J]. Geographical Research, 2000,19(4):337-343. ] | |
[41] | 齐清文,池天河.地学信息图谱的理论与方法研究[J].地理学报,2001,56(z1):8-18. |
[ Qi Q W, Chi T H.Research on the theory and method of geo-informatic Tupu[J]. Geographical Research, 2001,56(z1):8-18. ] | |
[42] | 廖克. 地学信息图谱的探讨与展望[J].地球信息科学,2002,4(2):14-20. |
[ Liao K.The discussion and prospect for geo-informatic Tupu[J]. Geo-information Science, 2002,4(2):14-20. ] | |
[43] |
骆剑承,周成虎,沈占锋,等.遥感信息图谱计算的理论方法研究[J].地球信息科学学报,2009,11(5):5664-5669.
doi: 10.3969/j.issn.1560-8999.2009.05.017 |
[ Luo J C, Zhou C H, Shen Z F, et al.Theoretic and methodological review on sensor information Tupu computation[J]. Journal of Geo-information Science, 2009,11(5):5664-5669. ]
doi: 10.3969/j.issn.1560-8999.2009.05.017 |
|
[44] |
李德仁,童庆禧,李荣兴,等.高分辨率对地观测的若干前沿科学问题[J].中国科学:地球科学,2012,42(6):805-813.
doi: 10.1007/s11783-011-0280-z |
[ Li D R, Tong Q X, Li R X, et al.Some frontier science problems of high-resolution earth observation[J]. Science China: Earth Sciences, 2012,42(6):805-813. ]
doi: 10.1007/s11783-011-0280-z |
|
[45] | 孙显,付琨,王宏琦.高分辨率遥感图像理解[M].北京:科学出版社,2011. |
[ Sun X, Fu K, Wang H Q.High resolution remote sensing image understanding[M]. Beijing: Science Press, 2011. ] | |
[46] |
吴田军,骆剑承,夏列钢,等.迁移学习支持下的遥感影像对象级分类样本自动选择方法[J].测绘学报,2014,43(9):903-916.
doi: 10.13485/j.cnki.11-2089.2014.0163 |
[ Wu T J, Luo J C, Xia L G, et al.An automatic sample collection method for object-oriented classification of remotely sensed imageries based on transfer learning[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(9):908-916. ]
doi: 10.13485/j.cnki.11-2089.2014.0163 |
[1] | WU Zhifeng, LUO Jiancheng, SUN Yingwei, WU Tianjun, CAO Zheng, LIU Wei, YANG Yingpin, WANG Lingyu. Research on Precision Agricultural based on the Spatial-temporal Remote Sensing Collaboration [J]. Journal of Geo-information Science, 2020, 22(4): 731-742. |
|