Journal of Geo-information Science ›› 2016, Vol. 18 ›› Issue (9): 1174-1183.doi: 10.3724/SP.J.1047.2016.01174
• Orginal Article • Previous Articles Next Articles
WANG Mo1,2, WANG Juanle1,3,*()
Received:
2015-11-06
Revised:
2016-03-16
Online:
2016-09-27
Published:
2016-09-27
Contact:
WANG Juanle
E-mail:wangjl@igsnrr.ac.cn
WANG Mo,WANG Juanle. A Study on the User Behavior of Geoscience Data Sharing Based on Web Usage Mining[J].Journal of Geo-information Science, 2016, 18(9): 1174-1183.DOI:10.3724/SP.J.1047.2016.01174
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Contents of a Web server log entry"
类别 | 详情 | fan
---|---|
主机IP | 128.227.49.92 |
时间 | 05/Aug/2014:10:26:42 +0800 |
方法 | GET |
URL | /extra/res/libs/kendo/extensions/kendo.extension.ui.js |
协议 | HTTP/1.1 |
状态 | 200 |
文件大小 | 15072 |
访问来源 | http://www.geodata.cn/extra/TopicsWin2/pro3.jsp |
客户端 | Mozilla/5.0 (Windows NT 6.3; WOW64; rv:31.0) Gecko/20100101 Firefox/31.0 |
Tab.3
Frequent itemsets for datasets visits of all users (S≥10%)"
项目集 | 支持度(S)/(%) | 内容描述 |
---|---|---|
100101-22 | 27.1 | 中国1:400万地貌图(形态) |
100101-2 | 12.9 | 中国1:400万资源环境数据(中国地形,1988年) |
100101-18 | 11.6 | 全国土地利用数据库(分省:1980s,1987-2001年;分县:1980s) |
100101-38 | 10.8 | 全国1 km网格人口数据(1995,2000, 2003,2005和2010年) |
100101-66 | 10.6 | 中国1:400万全要素基础数据 (1970s-1990s) |
Tab.4
Frequent itemseds for datasets visits ofactive users (S≥25%)"
项目集 | 支持度(S)/(%) | 内容描述 |
---|---|---|
100101-18 | 34.1 | 全国土地利用数据库(分省:1980s,1987-2001年;分县:1980s) |
100101-38 | 32.4 | 全国1 km网格人口数据(1995、2000、2003、2005和2010年) |
100101-2 | 30.7 | 中国1:400万资源环境数据(中国地形,1988年) |
100101-3 | 29.6 | 1996年浙江省1:25万数字化土地利用现状图 |
100101-30 | 29.2 | 全国多年平均降雨分布图(1 km)(建站到1996年) |
100101-38、100101-18 | 28.0 | 全国1 km网络人口数据、全国土地利用数据库 |
100101-18、100101-2 | 27.5 | 全国土地利用数据库、中国1:400万资源环境数据 |
100101-30、100101-18 | 27.2 | 全国多年平均降雨分布图、全国土地利用数据库 |
100101-66 | 27.1 | 中国1:400万全要素基础数据(1970 s-1990 s) |
100101-18、100101-3 | 26.8 | 全国土地利用数据库、1996年浙江省1:25万数字化土地利用现状图 |
Tab.5
Association rules (C≥90%)"
关联规则 | 置信度(C)/(%) |
---|---|
100101-30 ==> 100101-2 | 90.4 |
100101-3==> 100101-18 | 90.8 |
100101-38、 100101-18==> 100101-2 | 91.4 |
100101-18、100101-2==> 100101-3 | 92.4 |
100101-2、100101-18 ==> 100101-38 | 92.9 |
100101-30、100101-18==> 100101-3 | 93.0 |
100101-30 ==> 100101-18 | 93.1 |
100101-18、100101-3==> 100101-30 | 94.1 |
100101-18、100101-2==> 100101-30 | 94.2 |
100101-18、100101-3 ==> 100101-2 | 94.6 |
100101-30、100101-2==> 100101-3 | 95.4 |
100101-30、100101-18 ==> 100101-2 | 95.4 |
100101-2、100101-3 ==>100101-30 | 96.9 |
100101-38、100101-2 ==> 100101-18 | 97.2 |
100101-2、100101-3==> 100101-18 | 97.8 |
100101-30、100101-3 ==> 100101-2 | 98.2 |
100101-30、100101-2 ==> 100101-18 | 98.2 |
100101-30、100101-3==> 100101-18 | 98.5 |
Tab.6
Frequent itemsets for datasetsdownloads or application (top 5)"
项目集 | 支持度(S)/(%) | 内容描述 |
---|---|---|
100101-66 | 13.7 | 中国1:400万全要素基础数据(1970s-1990s) |
100101-38 | 9.6 | 全国1 km网格人口数据(1995、2000、2003、2005和2010年) |
100101-11860 | 8.1 | 全国1:25万土地覆被数据(1980s,2005年) |
100101-18 | 8.0 | 全国土地利用数据库(分省:1980s,1987-2001年;分县:1980s) |
100101-29 | 7.3 | 陆地卫星MSS/TM/ETM+(1973-2008年、覆盖全国) |
[1] | Tenopir C, Allard S, Douglass K.Data sharing by scientists: practices and perceptions[J]. PLoS ONE, 2011,6(6):e21101. |
[2] |
刘闯. 美国国有科学数据共享管理机制及对我国的启示[J].中国基础科学,2003(1):34-39.
doi: 10.3969/j.issn.1009-2412.2003.01.008 |
[ Liu C.Regulatory mechanisms of national science data sharing of USA and the inspiration to China[J]. China Basic Science, 2003,1:34-39. ]
doi: 10.3969/j.issn.1009-2412.2003.01.008 |
|
[3] |
徐冠华. 实施科学数据共享增强国家科技竞争力[J].中国基础科学,2003(1):5-9.
doi: 10.3969/j.issn.1009-2412.2003.01.002 |
[ Xu G H.Emhancing national science competitiveness with science data sharing[J]. China Basic Science, 2003,1:5-9. ]
doi: 10.3969/j.issn.1009-2412.2003.01.002 |
|
[4] |
Facca F M, Lanzi P L.Mining interesting knowledge from weblogs: asurvey[J]. Data & Knowledge Engineering, 2005,53(3):225-241.
doi: 10.1016/j.datak.2004.08.001 |
[5] | Sajid N A, Zafar S, Asghar S.Sequential pattern finding: A survey[C]. 2010 International Conference on Information and Emerging Technologies (ICIET), 2010:1-6. |
[6] |
Wang Y T, Lee A J T. Mining Web navigation patterns with a path traversal graph[J]. Expert Systems with Applications, 2011,38(6):7112-7122.
doi: 10.1016/j.eswa.2010.12.058 |
[7] |
Bayir M A, Toroslu I H, Demirbas M, et al.Discovering better navigation sequences for the session construction problem[J]. Data & Knowledge Engineering, 2012,73(2):58-72.
doi: 10.1016/j.datak.2011.11.005 |
[8] |
Chen L, Bhowmick S S, Nejdl W.COWES: Web user clustering based on evolutionary web sessions[J]. Data & Knowledge Engineering, 2009,68(10):867-885.
doi: 10.1016/j.datak.2009.05.002 |
[9] |
Dimopoulos C, Makris C, Panagis Y, et al.A web page usage prediction scheme using sequence indexing and clustering echniques[J]. Data & Knowledge Engineering, 2010,69(4):371-382.
doi: 10.1016/j.datak.2009.04.010 |
[10] |
Narvekar M, Banu S S.Predicting user's Web navigation behavior using hybrid approach[J]. Procedia Computer Science, 2015,45:3-12.
doi: 10.1016/j.procs.2015.03.073 |
[11] | Mobasher B, Cooley R,Srivastava J.Automatic personalization based on Web usage mining[J]. Communications of the ACM, 2000,43(8):142-151. |
[12] | Park D H, Kim H K, Choi I Y, et al.A literature review and classification of recommender systems research[J]. Expert Systems with Applications, 2010,39(11):10059-10072. |
[13] |
Pierrakos D, Paliouras G, Papatheodorou C, et al.Web usage mining as a tool for personalization: a survey. user modeling and user adapted interaction, 2003,13(4):311-372.
doi: 10.1023/A:1026238916441 |
[14] |
Carmona C J, Ramírez-Gallego S, Torres F, et al.Web usage mining to improve the design of an e-commerce website: OrOliveSur com. expert systems with applications, 2012,39(12):11243-11249.
doi: 10.1016/j.eswa.2012.03.046 |
[15] |
Yin P Y, Guo Y M.Optimization of multi-criteria website structure based on enhanced tabu search and web usage mining[J]. Applied Mathematics and Computation, 2013,219(24):11082-11095.
doi: 10.1016/j.amc.2013.05.033 |
[16] |
Song Q, Shepperd M J.Mining Web browsing patterns for E-commerce[J]. Computers in Industry, 2006,57(7):622-630.
doi: 10.1016/j.compind.2005.11.006 |
[17] |
Lopes P, Roy B.Dynamic recommendation system using Web usage mining for e-commerce users[J]. Procedia Computer Science, 2015,45:60-69.
doi: 10.1016/j.procs.2015.03.086 |
[18] |
Hung Y S, Chen K L B, Yang C T, et al. Web usage mining for analyzing elder self-care behavior patterns[J]. Expert Systems with Applications, 2013,40(2):775-83.
doi: 10.1016/j.eswa.2012.08.037 |
[19] |
Munka M, Drl K M.Impact of different pre-processing tasks on effective identification of users' behavioral patterns in Web-based educational system[J]. Procedia Computer Science, 2011,4:1640-1649.
doi: 10.1016/j.procs.2011.04.177 |
[20] |
Romero C, Espejo P G, Zafra A, et al.Web usage mining for predicting final marks of students that use Moodle courses[J]. Computer Applications in Engineering Education, 2013,21(1):135-146.
doi: 10.1002/cae.20456 |
[21] |
王琨,郭风华,李仁杰,等.基于Tripadvisior的中国旅游地国际关注度及空间格局[J].地理科学进展,2014(11):1462-1473.
doi: 10.11820/dlkxjz.2014.09.004 |
[ Wang K, Guo F H, Li R J.Tourism attention degree about China from overseas and its spatial patterns based on Tripadvisor[J]. Progress in Geography, 2014(11):1462-1473. ]
doi: 10.11820/dlkxjz.2014.09.004 |
|
[22] |
Arbelaitz O, Gurrutxaga I, Lojo A, et al.Web usage and content mining to extract knowledge for modelling the users of the Bidasoa Turismo website and to adapt it[J]. Expert Systems with Applications, 2013,40(18):7478-7491.
doi: 10.1016/j.eswa.2013.07.040 |
[23] | Cooley R, Mobasher B, Srivastava J.Data preparation for mining World Wide Web browsing patterns[J]. Knowledge and Information Systems, 1999,1(1):5-32. |
[24] |
Kosala R, Blockeel H.Web mining research: a survey[J]. Sigkdd Explorations, 2000,2(1):1-15.
doi: 10.1145/360402.360406 |
[25] | Berendt B, Mobasherb B, Nakagawa M, et al.The impact of site structure and user environment on session reconstruction in web usage analysis[A]. In: Zaïane O, Srivastava J, Spiliopoulou M, et al (eds.). WEBKDD 2002 - mining web data for discovering usage patterns and profiles[M]. Berlin: Springer Berlin Heidelberg, 2003,2703:159-179. |
[26] |
Levene M, Borges J, Loizou G.Zipf's law for Web surfers[J]. Knowledge and Information Systems, 2001,3(1):120-129.
doi: 10.1007/PL00011657 |
[27] | Liu B.Web data mining (second edition)[M]. Chicago: Springer, 2011:540-542. |
[28] |
Getis A, Ord J K.The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992,24:189-206.
doi: 10.1111/j.1538-4632.1992.tb00261.x |
[29] |
Peeters A, Zude M, K Thner J, et al. Getis-Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data[J]. Computers and Electronics in Agriculture, 2015,111:140-150.
doi: 10.1016/j.compag.2014.12.011 |
[30] |
Feske M L, Teeter L D, Musser J M, et al.Including the third dimension: a spatial analysis of TB cases in Houston Harris county[J]. Tuberculosis, 2011,91(Supplement 1):24-33.
doi: 10.1016/j.tube.2011.10.006 pmid: 22094150 |
[31] |
Luković J, Blagojevć D, Kilibarda M, et al.Spatial pattern of north Atlantic oscillation impact on rainfall in Serbia[J]. Spatial Statistics, 2015,14(Part A):39-52.
doi: 10.1016/j.spasta.2015.04.007 |
[32] |
Chopin P, Blazy J-M.Assessment of regional variability in crop yields with spatial autocorrelation: banana farms and policy implications in Martinique[J]. Agriculture, Ecosystems & Environment, 2013,181:12-21.
doi: 10.1016/j.agee.2013.09.001 |
[33] | Agraval R, Srikant R.Fast algorithms for mining association rules in large data bases[C]. Proceedings of the 20th International Conference on Very Large Data Bases, 1994. |
[34] |
Zaki M J, Parthasarathy S, Ogihara M, et al.Parallel algorithms for discovery of association rules[J]. Data Mining and Knowledge Discovery, 1997,1(4):343-173.
doi: 10.1023/A:1009773317876 |
[35] |
Han J, Pei J, Yin Y.Mining frequent patterns without candidate generation[J]. Sigmod Record, 2000,29(2):1-12.
doi: 10.1145/342009.335372 |
|