地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (9): 1235-1243.doi: 10.12082/dqxxkx.2018.180064
收稿日期:
2018-01-21
修回日期:
2018-03-29
出版日期:
2018-09-25
发布日期:
2018-09-25
作者简介:
作者简介:林 定(1977-),女,博士,助理研究员,主要从事图形学、数据可视化与虚拟地理环境研究。E-mail:
基金资助:
LIN Ding1,*(), SHEN Xiaoyun1, ZHU Yongbing2, CHEN Chongcheng1
Received:
2018-01-21
Revised:
2018-03-29
Online:
2018-09-25
Published:
2018-09-25
Contact:
LIN Ding
Supported by:
摘要:
为揭示树木的不同空间配植方案对行人呼吸高度气流的影响,本文将树木视为均匀多孔介质,通过附加源项法从空气动力学角度用CFD模拟了H/W=2的典型深街谷几何内4种树木配植情景,实验表明,不同空间配置下树木对街谷内行人呼吸高度处局地气流的影响强弱在空间分布模式上差异悬殊:① 均匀种植的树木对街谷内行人呼吸高度的气流起到阻碍作用,不均匀种植则有效提升街谷的整体流速。4种空间配植方案下树木对气流的影响程度不同,阻碍作用从大到小的顺序为均匀间距8 m(Spa8m)>均匀间距6 m(Spa6m)>均匀间距20 m(Spa20m)>不均匀配植(Non-uniform);对应的平均气流增强指标顺序为$\bar{D}_{spa8}$(-19.31%)<$\bar{D}_{spa6}$(-16.14%)<$\bar{D}_{spa20}$(-10.73%)<$\bar{D}_{non-uniform}$(1.25%)。② 对比不均匀和均匀的种植方案,不均匀植树的街谷内部行人呼吸高度的气流流速比其对照案例(均匀植树Spa8m方案)整体增强了106.49%。街谷中部不种树,在街谷两端配置树木并预留足够的自由空间的不均匀植树方案,能够让角涡渗入街谷中部,促使街谷内部的垂直漩涡和两端的水平角涡运动,增强湍流和垂直交换,有效减少了街道两端“风口效应”和街道中部“风影效应”的区域,改善了整个街谷行人呼吸平面的风环境。④ 合理空间配置的树木能够改善街谷内部的行人风环境。街谷内行人呼吸高度处的气流对局地条件很敏感,树木的局部配置(空间簇集、密度)将引起强烈的空间变化。在既有城市建筑布局条件下,如何通过谨慎的景观设计,利用树木等城市绿化措施有效地改善城市的行人风环境,缓解污染扩散、疾病传播等问题,本文的方法可提供一定的参考。
林定, 申小云, 朱勇兵, 陈崇成. 典型深街谷内树木空间配置对行人呼吸高度处气流的影响[J]. 地球信息科学学报, 2018, 20(9): 1235-1243.DOI:10.12082/dqxxkx.2018.180064
LIN Ding,SHEN Xiaoyun,ZHU Yongbing,CHEN Chongcheng. Effect of Spatial Distribution of Trees on the Airflow at Pedestrian Breath Height in the Typical Deep Street Canyon[J]. Journal of Geo-information Science, 2018, 20(9): 1235-1243.DOI:10.12082/dqxxkx.2018.180064
[1] | United Nations.Concise Report on the World Population Situation 2014[M]. New York: United Nations, 2014. |
[2] | Nations U. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Urbanization Prospects[ED/OL].2011. |
[3] |
Hooff T V, Blocken B, Tominaga Y.On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments[J]. Building and Environment, 2017,114:148-165.
doi: 10.1016/j.buildenv.2016.12.019 |
[4] |
Vos P E J, Maiheu B, Vankerkom J, et al. Improving local air quality in cities: To tree or not to tree?[J]. Environmental Pollution, 2013,183(4):113-122.
doi: 10.1016/j.envpol.2012.10.021 pmid: 23194646 |
[5] |
Jiao M, Zhou W, Zheng Z, et al.Patch size of trees affects its cooling effectiveness: A perspective from shading and transpiration processes[J]. Agricultural and Forest Meteorology, 2017,247:293-299.
doi: 10.1016/j.agrformet.2017.08.013 |
[6] |
Toparlar Y, Blocken B, Vos P, et al.CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam[J]. Building and Environment, 2015,83:79-90.
doi: 10.1016/j.buildenv.2014.08.004 |
[7] | Nowak D J, Hirabayashi S, Doyle M, et al.Air pollution removal by urban forests in Canada and its effect on air quality and human health[J]. Urban Forestry & Urban Greening, 2018,29:40-48. |
[8] |
Jeanjean A P R, Hinchliffe G, Mcmullan W A, et al. A CFD study on the effectiveness of trees to disperse road traffic emissions at a city scale[J]. Atmospheric Environment, 2015,120:1-14.
doi: 10.1016/j.atmosenv.2015.08.003 |
[9] |
Chen L, Hang J, Sandberg M, et al.The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models[J]. Building and Environment, 2017,118:344-361.
doi: 10.1016/j.buildenv.2017.03.042 |
[10] |
Mei S J, Hu J T, Liu D, et al.Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density[J]. Energy and Buildings, 2017,155:324-338.
doi: 10.1016/j.enbuild.2017.09.019 |
[11] | Jeanjean A P R, Buccolieri R, Eddy J, et al. Air quality affected by trees in real street canyons: The case of Marylebone neighbourhood in central London[J]. Urban Forestry & Urban Greening, 2017,22:41-53. |
[12] |
Oke T R.Street design and urban canopy layer climate[J]. Energy and Buildings, 1988,11(1-3):103-113.
doi: 10.1016/0378-7788(88)90026-6 |
[13] |
Buccolieri R, Gromke C, Sabatino S D, et al.Aerodynamic effects of trees on pollutant concentration in street canyons[J]. Science of the Total Environment, 2009,407(19):5247-5256.
doi: 10.1016/j.scitotenv.2009.06.016 pmid: 19596394 |
[14] | Salim S M.Computational study of wind flow and pollutant dispersion near tree canopies[D]. Nottingham: University of Nottingham, 2011. |
[15] |
Ng W Y, Chau C K.Evaluating the role of vegetation on the ventilation performance in isolated deep street canyons[J]. International Journal of Environment and Pollution, 2012,50(1-4):98-110.
doi: 10.1504/IJEP.2012.051184 |
[16] | 徐伟嘉,幸鸿,余志.道路绿化带对街道峡谷内污染物扩散的影响研究[J].环境科学,2012,33(2):532-538. |
[ Xu W J, Xing H, Yu Z.Effect of greenbelt on pollutant dispersion in street canyon[J]. Environmental Science, 2012,33(2):532-538. ] | |
[17] | Pancholy P P, Clemens K, Geoghegan P, et al. Numerical study of flow and pedestrian level wind comfort inside uniform and non-uniform street canyons with different street width to building height aspect ratios[OL/J]. . |
[18] |
Moonen P, Gromke C, Dorer V.Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting[J]. Atmospheric Environment, 2013,75(3):66-76.
doi: 10.1016/j.atmosenv.2013.04.016 |
[19] | 王雪艳. 基于道路绿化带影响的街道峡谷内尾气扩散的数值模拟[D].济南:山东大学,2015. |
[ Wang X Y.Numerical simulation of vehicle pollutant dispersion in street canyon based on the influence of road greenbelts[D]. Jinan: Shandong University, 2015. ] | |
[20] |
Abhijith K V, Gokhale S.Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons[J]. Environmental Pollution, 2015,204:99-108.
doi: 10.1016/j.envpol.2015.04.013 |
[21] |
Gromke C, Ruck B.Influence of trees on the dispersion of pollutants in an urban street canyon: Experimental investigation of the flow and concentration field[J]. Atmospheric Environment, 2007,41(16):3287-3302.
doi: 10.1016/j.atmosenv.2006.12.043 |
[22] |
Gromke C, Ruck B.On the impact of trees on dispersion processes of traffic emissions in street canyons[J]. Boundary-Layer Meteorology, 2009,131(1):19-34.
doi: 10.1007/s10546-008-9301-2 |
[23] |
Gromke C, Ruck B.Pollutant concentrations in street canyons of different aspect ratio with avenues of trees for various wind directions[J]. Boundary-Layer Meteorology, 2012,144(1):41-64.
doi: 10.1007/s10546-012-9703-z |
[24] |
Amorim J H, Rodrigues V, Tavares R, et al. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion[J]. Science of the Total Environment, 2013: 461-462, 541-551.
doi: 10.1016/j.scitotenv.2013.05.031 pmid: 23751336 |
[25] |
Balczó M, Gromke C, Ruck B.Numerical modeling of flow and pollutant dispersion in street canyons with tree planting[J]. Meteorologische Zeitschrift, 2009,18(2):197-206.
doi: 10.1127/0941-2948/2009/0361 |
[26] |
Buccolieri R, Salim S M, Leo L S, et al.Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction[J]. Atmospheric Environment, 2011,45(9):1702-1713.
doi: 10.1016/j.atmosenv.2010.12.058 |
[27] |
Gromke C, Blocken B.Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: Traffic pollutant concentrations at pedestrian level[J]. Environmental Pollution, 2015,196:176-184.
doi: 10.1016/j.envpol.2014.10.015 |
[28] |
Salmond J A, Williams D E, Laing G, et al.The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon[J]. Science of the Total Environment, 2013,443:287-298.
doi: 10.1016/j.scitotenv.2012.10.101 |
[29] | Hofman J, Bartholomeus H, Janssen S, et al.Influence of tree crown characteristics on the local PM10 distribution inside an urban street canyon in Antwerp (Belgium): A model and experimental approach[J]. Urban Forestry & Urban Greening, 2016,20:265-276. |
[30] |
Abhijith K V, Kumar P, Gallagher J, et al.Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments: A review[J]. Atmospheric Environment, 2017,162:71-86.
doi: 10.1016/j.atmosenv.2017.05.014 |
[31] |
Janhäll S.Review on urban vegetation and particle air pollution: Deposition and dispersion[J]. Atmospheric Environment, 2015,105:130-137.
doi: 10.1016/j.atmosenv.2015.01.052 |
[32] |
Vardoulakis S, Fisher B E A, Pericleous K, et al. Modelling air quality in street canyons: A review[J]. Atmospheric Environment, 2003,37(2):155-182.
doi: 10.1016/S1352-2310(02)00857-9 |
[33] |
Krayenhoff E S, Santiago J L, Martilli A, et al.Parametrization of drag and turbulence for urban neighbourhoods with trees[J]. Boundary-Layer Meteorology, 2015,156(2):157-189.
doi: 10.1007/s10546-015-0028-6 |
[34] |
Ai Z T, Mak C M.CFD simulation of flow in a long street canyon under a perpendicular wind direction: Evaluation of three computational settings[J]. Building and Environment, 2017,114:293-306.
doi: 10.1016/j.buildenv.2016.12.032 |
[35] |
Castro I P, Xie Z T, Fuka V, et al.Measurements and computations of flow in an urban street system[J]. Boundary-Layer Meteorology, 2017,162(2):207-230.
doi: 10.1007/s10546-016-0200-7 |
[36] |
Wolf-Grosse T, Esau I, Reuder J.Sensitivity of local air quality to the interplay between small- and large-scale circulations: a Large Eddy Simulation study[J]. Atmospheric Chemistry and Physics, 2017,17(11):7261-7276.
doi: 10.5194/acp-17-7261-2017 |
[37] |
Li H, Cui G, Zhang Z.A New Scheme for the simulation of microscale flow and dispersion in urban areas by coupling large-eddy simulation with mesoscale models[J]. Boundary-Layer Meteorology, 2018,167(1):145-170.
doi: 10.1007/s10546-017-0323-5 |
[38] | Blocken B, Janssen W D, Hooff T V.CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus[J]. Environmental Modelling & Software, 2012,30:15-34. |
[39] | CODASE. (2008)Concentration data of street canyon, internet database[ED/OL]. . |
[40] | Franke J, Hellsten A, Schlünzen H, et al.Best practice guideline for the CFD simulation of flows in the urban environment[M]. Belgium: Cost Office Brussels, 2007. |
[41] |
Tominaga Y, Mochida A, Yoshie R, et al.AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96(10-11):1749-1761.
doi: 10.1016/j.jweia.2008.02.058 |
[42] |
Gromke C.A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies[J]. Environmental Pollution, 2011,159(8-9):2094-2099.
doi: 10.1016/j.envpol.2010.11.012 |
[43] | 张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005. |
[ Zhang Z S, Cui G X, Xu C X.Theory and modeling of turbulence[M]. Beijing:Tsinghua University Press, 2005. ] | |
[44] |
Giometto M G, Christen A, Egli P E, et al.Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment[J]. Advances in Water Resources, 2017,106:154-168.
doi: 10.1016/j.advwatres.2017.06.018 |
[45] |
Giometto M G, Christen A, Meneveau C, et al.Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface[J]. Boundary-Layer Meteorology, 2016,160(3):425-452.
doi: 10.1007/s10546-016-0157-6 |
[1] | 江锋, 唐丽玉, 林定, 陈晓玲, 冯先超, 陈崇成. 基于城市园林树木景观三维模拟的绿视率估算方法[J]. 地球信息科学学报, 2021, 23(12): 2151-2162. |
[2] | 杨土士, 王伟文, 常鸣, 王雪梅. 北京市潜在风道的数值模拟与综合识别[J]. 地球信息科学学报, 2020, 22(10): 1996-2009. |
[3] | 陈动, 张振鑫, 王臻, 云挺, 丁惠倩. 骨架优化下的地面激光树木点云重建方法[J]. 地球信息科学学报, 2019, 21(2): 236-248. |
[4] | 马钧霆, 陈锁忠, 朱晓婷, 何志超. 3D GIS下地下水流有限元数值模拟方法与应用[J]. 地球信息科学学报, 2016, 18(6): 749-757. |
[5] | 李智广, 谢顺平, 都金康, 黄洋, 左天惠, 郑文龙. 海南岛及北部湾海域海啸数值模拟与影响分析[J]. 地球信息科学学报, 2015, 17(8): 937-944. |
[6] | 黄金, 高星, 王伟. 地震勘探全波形反演的应用与发展分析[J]. 地球信息科学学报, 2014, 16(3): 396-401. |
[7] | 王占刚, 庄大方. 面向空间特征的虚拟树木建模方法与应用[J]. 地球信息科学学报, 2010, 12(2): 167-173. |
[8] | 石松, 於其之, 陈崇成, 朱泉锋. 贝塞尔曲线在虚拟森林景观单树几何模型构建中的应用[J]. 地球信息科学学报, 2004, 6(3): 90-93. |
|