[1] |
国家统计局.中华人民共和国2017年国民经济和社会发展统计公报[P]. 2018..
|
|
[ National statisticureau. Statistical bulletin on national economic and social development in 2017 of People's Republic of China[P]. 2018, ]
|
[2] |
Zhang J H, Feng L L, Yao F M.Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series data and crop phenological information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,94:102-113.
|
[3] |
Zhong L H, Grong P, Biging G S.Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery[J]. Remote Sensing of Environment, 2014,140:1-13.
|
[4] |
Song X P, Potapov P V, Krylov A, et al.National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey[J]. Remote Sensing of Environment, 2017,190:383-395.
|
[5] |
吴炳方,范锦龙,田亦陈等.全国作物种植结构快速调查技术与应用[J].遥感学报,2004,8(6):618-627.
doi: 10.11834/jrs.20040612
|
|
[ Wu B F, Fan J L, Tian Y C, et al.A method for crop planting structure inventory and its application[J]. Journal of Remote Sensing, 2004,8(6):618-627. ]
doi: 10.11834/jrs.20040612
|
[6] |
刘佳,王利民,滕飞等.RapidEye卫星红边波段对农作物面积提取精度的影响[J].农业工程学报,2016,32(13):140-148.
|
|
[ Liu J, Wang L M, Teng F, et al.Impact of red-edge waveband of RapidEye satellite on estimation accuracy of crop planting area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(13):140-148. ]
|
[7] |
Zeng L L, Wardlow B D, Wang R, et al.A hybrid approach for detecting corn and soybean phenology with time-series MODIS data[J]. Remote sensing of environment, 2016,181:237-250.
|
[8] |
黄健熙,侯矞焯,苏伟等.基于GF-1 WFV数据的玉米与大豆种植面积提取方法[J].农业工程学报,2017,33(7):164-170.
|
|
[ Huang J X, Hou Y Z, Su W, et al.Mapping corn and soybean cropped area with GF-1 WFV data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(7):164-170. ]
|
[9] |
ZHANG X, WU B F, PONCE-CAMPOS G, et al.Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images[J]. Remote Sensing, 2018,10(8):1200.
|
[10] |
Belgiu M, Drăguţ L.Random forest in remote sensing: A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,114:24-31.
|
[11] |
Zheng B J, Myint S W, Thenkabail P S, et al.A support vector machine to identify irrigated crop types using time-series Landsat NDVI data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,34:103-112.
|
[12] |
Hecht-nielsen R. Theory of the backpropagation neural network[M]. Washington: Neural networks for perception. Elsevier. 1992:65-93.
|
[13] |
Mas J F, Flores J J.The application of artificial neural networks to the analysis of remotely sensed data[J]. International Journal of Remote Sensing, 2008,29(3):617-663.
|
[14] |
Glorot X, Bordes A, Bengio Y.Deep sparse rectifier neural networks[C]. In Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011:315-323.
|
[15] |
吴炳方,田亦陈,李强子. GVG农情采样系统及其应用[J].遥感学报,2004,8(6):570-580.
doi: 10.11834/jrs.20040606
|
|
[ Wu B F, Tian Y C, Li Q Z.GVG, a crop type proportion sampling instrument[J]. Journal of Remote Sensing, 2004,8(6):570-580. ]
doi: 10.11834/jrs.20040606
|
[16] |
Achanta R, Shaji A, Smith K, et al.SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE transactions on pattern analysis and machine intelligence, 2012,34(11):2274-2282.
|
[17] |
Bargiel D.A new method for crop classification combining time series of radar images and crop phenology information[J]. Remote Sensing of Environment, 2017,198:369-383.
|
[18] |
徐晗泽宇,刘冲,王军邦,等.Google Earth Engine平台支持下的赣南柑橘果园遥感提取研究[J].地球信息科学学报,2018,20(3):396-404.
|
|
[ Xu H Z Y, Liu C, Wang J B, et al. Study on extraction of citrus orchard in Gannan region based on google earth engine platform[J]. Journal of Geo-information Science, 2018,20(3):396-404. ]
|
[19] |
Gallego F J, Kussul N, Skakun S, et al.Efficiency assessment of using satellite data for crop area estimation in Ukraine[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,29:22-30.
|
[20] |
Peña-barragán J M, Ngugi M K, Plant R E, et al. Object-based crop identification using multiple vegetation indices, textural features and crop phenology[J]. Remote Sensing of Environment, 2011,115(6):1301-1316.
|