[1] |
Mladenova I E, Jackson T J, Njoku E , et al. Remote monitoring of soil moisture using passive microwave-based techniques: Theoretical basis and overview of selected algorithms for AMSR-E[J]. Remote Sensing of Environment, 2014,144(4):197-213.
|
[2] |
胡蝶, 郭铌, 沙莎 , 等. 基于Radarsat-2 SAR数据反演定西裸露地表土壤水分[J]. 干旱气候, 2014,32(4):553-559.
|
|
[ Hu D, Guo N, Sha S , et al. Retrieval of bare soil moisture based on radarsat-2 SAR in Dingxi of Gansu province[J]. Journal of Arid Meteorology, 2014,32(4):553-559. ]
|
[3] |
杨涛, 宫辉力, 李小娟 , 等. 土壤水分遥感监测研究进展[J]. 生态学报, 2010,30(22):6264-6277.
|
|
[ Yang T, Gong H L, Li X J , et al. Progress of soil moisture monitoring by remote sensing[J]. Acta Ecologica Sinica, 2010,30(22):6264-6277. ]
|
[4] |
Kong J L, Yang J, Zhen P P , et al. A coupling model for soil moisture retrieval in sparse vegetation covered areas based on microwave and optical remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(12):7162-7173.
|
[5] |
Khedri E, Hasanlou M, Tabatabaeenejad A. Estimating soil moisture using polsar data: a machine learning approach[J]. ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences , 2017, XLII-4/W4:133-137.
|
[6] |
Ahmad S, Kalra A, Stephen H . Estimating soil moisture using remote sensing data: A machine learning approach[J]. Advances in Water Resources, 2010,33(1):69-80.
doi: 10.1016/j.advwatres.2009.10.008
|
[7] |
曾旭婧, 邢艳秋, 单炜 , 等. 基于Sentinel-1A与Landsat 8数据的北黑高速沿线地表土壤水分遥感反演方法研究[J]. 中国生态农业学报, 2017,25(1):118-126.
|
|
[ Zeng X J, Xing Y Q, Shan W , et al. Soil water content retrieval based on Sentinel-1A and Landsat 8 image for Bei'an-Heihe Expressway[J]. Chinese Journal of Eco-Agriculture, 2017,25(1):118-126. ]
|
[8] |
姜红 , 玉素甫江·如素力,拜合提尼沙.阿布都克日木,等.基于支持向量机回归算法的土壤水分光学与微波遥感协同反演[J]. 地理与地理信息科学, 2017,33(6):30-36.
|
|
[ Jiang H, Yusufujiang R, Baihetinisha A , et al. Soil moisture retrieval by synergizing optical and microwave remote sensing data based on support vector machine regression algorithm[J]. Geography and Geo-information Science, 2017,33(6):30-36. ]
|
[9] |
Attema E P W, Ulaby F T . Vegetation modeled as a water cloud[J]. Radio Science, 1978,13(2):357-364.
|
[10] |
Bindlish R, Barros A P . Parameterization of vegetation backscatter in radar-based, soil moisture estimation[J]. Remote Sensing of Environment, 2001,76(1):130-137.
|
[11] |
Svoray T, Shoshany M . SAR-based estimation of areal aboveground biomass (AAB) of herbaceous vegetation in the semi-arid zone: A modification of the water-cloud model[J]. International Journal of Remote Sensing, 2010,23(19):4089-4100.
|
[12] |
Fung A K, Chen K S . An update on the IEM surface backscattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2004,1(2):75-77.
|
[13] |
Oh Y, Sarabandi K, Ulaby F T . An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transaction on Geoscience and Remote Sensing, 1992,30(2):370-381.
|
[14] |
Oh Y, Sarabandi K, Ulaby F T . Semi-empirical model of the ensemble-averaged differential mueller matrix for microwave backscattering from bare soil surfaces[J]. IEEE Transaction on Geoscience and Remote Sensing, 2002,40(6):1348-1355.
|
[15] |
Lievens H , Verhoest N E C, Keyser E D.Effective roughness modelling as a tool for soil moisture retrieval from C- and L-band SAR[J]. Hydrology and Earth System Science, 2011,15(1):151-162.
|
[16] |
孔金玲, 甄珮珮, 李菁菁 , 等. 基于新的组合粗糙度参数的土壤水分微波遥感反演[J]. 地理与地理信息科学, 2016,32(3):34-38.
|
|
[ Kong J L, Zhen P P, Li J J , et al. Retrieval of soil moisture using microwave remote sensing data based on a new combined roughness parameter[J]. Geography and Geo-information Science, 2016,32(3):34-38. ]
|
[17] |
孔金玲, 李菁菁, 甄珮珮 , 等. 微波与光学遥感协同反演旱区地表土壤水分研究[J]. 地球信息科学学报, 2016,18(6):857-863.
|
|
[ Kong J L, Li J J, Zhen P P , et al. Inversion of soil moisture in arid area based on microwave and optical remote sensing data[J]. Journal of Geo-information Science, 2016,18(6):857-863. ]
|
[18] |
王慧勤 . 基于支持向量机的短期风速预测方法研究[D]. 西安:西安科技大学, 2009.
|
|
[ Wang H Q . Study on methods of short-term wind speed forecast based on support vector machine[D]. Xi'an. Xi'an University of Science and.Technology, 2009. ]
|
[19] |
杨浩, 孟娜, 王婧 , 等. 基于支持向量机的京津冀城市群热环境时空形态模拟[J]. 地球信息科学学报, 2019,21(2):190-200.
|
|
[ Yang H, Meng N, Wang J , et al. Spatial-temporal morphology simulation of Beijing-Tianjin-Hebei urban agglomeration thermal environment based on support vector machine[J]. Journal of Geo-information Science, 2019,21(2):190-200. ]
|