地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (10): 1608-1618.doi: 10.12082/dqxxkx.2019.190102
收稿日期:
2019-03-06
修回日期:
2019-05-15
出版日期:
2019-10-25
发布日期:
2019-10-29
作者简介:
冯珊珊(1994-),女,广东阳江人,博士生,主要从事城市不透水面研究。E-mail: 2016022046@m.scnu.edu.cn
基金资助:
Received:
2019-03-06
Revised:
2019-05-15
Online:
2019-10-25
Published:
2019-10-29
Contact:
FAN Fenglei
Supported by:
摘要:
不透水面作为反映城市发展程度和表征城市生态环境的重要指标,在城市化研究中成为重要的数据源。当前,不透水面信息的获取通常基于遥感数据来开展,包括不同分辨率的遥感数据。这些遥感数据在高精度提取城市不透水面的能力具有较大的差异,会因尺度不同而带来提取精度的偏差。因此,理解不同遥感数据源在不透水面提取上的差异尤为重要。本文利用Landsat/OLI光谱数据和VIIRS/DNB夜间灯光数据分别采用线性光谱混合分析法和大尺度不透水面指数法提取珠江三角洲研究区的不透水面信息,并从不透水面总体精度、不同密度精度对比分析2类数据源提取不透水面的差异。结果表明:① Landsat/OLI和VIIRS/DNB两者提取不透水面的总体精度差异不大,Landsat/OLI提取不透水面的精度总体上略高于VIIRS/DNB。2种数据提取不透水面的均方根误差RMSE分别是0.18和0.21,系统误差SE分别是0.12和0.13,决定系数R 2分别是0.76和0.67。② Landsat/OLI和VIIRS/DNB数据对不同密度不透水面分布区域的提取能力不同:VIIRS/DNB在低密度不透水面区域提取精度高于Landsat/OLI;而Landsat/OLI在中、高密度不透水面区域提取精度均高于VIIRS/DNB。通过2种数据提取精度差异的对比,以期为不同密度的不透水面分布区域提取找到最佳尺度的数据源,提高不透水面提取的效率和精度。
冯珊珊,樊风雷. Landsat/OLI与夜间灯光数据在提取城市不透水面中的精度差异分析[J]. 地球信息科学学报, 2019, 21(10): 1608-1618.DOI:10.12082/dqxxkx.2019.190102
FENG Shanshan,FAN Fenglei. Accuracy Comparison between Landsat/OLI and Nighttime Light Data in Extracting Urban Impervious Surface[J]. Journal of Geo-information Science, 2019, 21(10): 1608-1618.DOI:10.12082/dqxxkx.2019.190102
[1] | Arnold Jr C L, Gibbons C J . Impervious surface coverage: The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258. |
[2] | Weng Q H . Modeling urban growth effect on surface runoff with the integration of remote sensing and GIS[J]. Environmental Management, 2001,28(6):737-748. |
[3] | Brun S E, Band L E . Simulating runoff behavior in an urbanizing watershed[J]. Computers Environment & Urban Systems, 2000,24(1):5-22. |
[4] | Brabec E, Schulte S, Richards P L . Impervious surfaces and water quality: A review of current literature and its implications for watershed planning[J]. Journal of Planning Literature, 2002,16(4):499-514. |
[5] | Alberti M, Booth D, Hill K , et al. The impact of urban patterns on aquatic ecosystems: An empirical analysis in Puget lowland sub-basins[J]. Landscape & Urban Planning, 2007,80(4):345-361. |
[6] | Yuan F, Bauer M E . Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007,106(3):375-386. |
[7] | 徐涵秋 . 基于城市地表参数变化的城市热岛效应分析[J]. 生态学报, 2011,31(14):3890-3901. |
[ Xu H Q . Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors[J]. Acta Ecologica Sinica, 2011,31(14):3890-3901. ] | |
[8] | 樊智宇, 詹庆明, 刘慧民 , 等. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019,21(2):226-235. |
[ Fan Z Y, Zhan Q M, Liu H M , et al. Spatial-temporal distribution of urban heat island and the heating effect of impervious surface in summer in Wuhan[J]. Journal of Geo-information Science, 2019,21(2):226-235. ] | |
[9] | Weng Q H . Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends[J]. Remote Sensing of Environment, 2012,117(2):34-49. |
[10] | 徐涵秋, 王美雅 . 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016,20(5):1270-1289. |
[ Xu H Q, Wang M Y . Remote sensing-based retrieval of ground impervious surface[J]. Journal of Remote Sensing, 2016,20(5):1270-1289. ] | |
[11] | Wu C S, Murray A T . Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(4):493-505. |
[12] | Wu C S . Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004,93(4):480-492. |
[13] |
岳文泽, 吴次芳 . 基于混合光谱分解的城市不透水面分布估算[J]. 遥感学报, 2007,11(6):914-922.
doi: 10.11834/jrs.200706123 |
[ Yue W Z, Wu C F . Urban impervious surface distribution estimation by spectral mixture analysis[J]. Journal of Remote Sensing, 2007,11(6):914-922. ]
doi: 10.11834/jrs.200706123 |
|
[14] | Xu H Q . A new index for delineating build-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008,29(14):4269-4276. |
[15] | Liu C, Shao Z F, Chen M , et al. MNDISI: A multi-source composition index for impervious surface area estimation at the individual city scale[J]. Remote Sensing Letters, 2013,4(8):803-812. |
[16] | Sun G Y, Chen X L, Jia X P , et al. Combinational build-up index (CBI) for effective impervious surface mapping in urban areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,9(5):2081-2092. |
[17] | Yang L M, Huang C Q, Homer C G , et al. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery[J]. Canadian journal of remote sensing, 2003,29(2):230-240. |
[18] | Xian G, Crane M . Assessments of urban growth in the Tampa Bay watershed using remote sensing data[J]. Remote Sensing of Environment, 2005,97(2):203-215. |
[19] | Xian G, Crane M, Mcmahon C . Qua.pngying multi-temporal urban development characteristics in Las Vegas from Landsat and ASTER Data[J]. Photogrammetric Engineering & Remote Sensing, 2008,74(4):473-481. |
[20] | 向超, 朱翔, 胡德勇 , 等. 近20年京津唐地区不透水面变化的遥感监测[J]. 地球信息科学学报, 2018,20(5):684-693. |
[ Xiang C, Zhu X, Hu D Y , et al. Monitoring the impervious surface with multi-resource remote sensing images in Beijing-Tianjin-Tangshan urban agglomeration in the past two decades[J]. Journal of Geo-information Science, 2018,20(5):684-693. ] | |
[21] | Carlson T N, Arthur S T . The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective[J]. Global & Planetary Change, 2000,25(1):49-65. |
[22] | Bauer M E, Loffelholz B C, Wilson B. Estimating and mapping impervious surface area by regression analysis of Landsat imagery[M]. Boca Raton: CRC Press, 2007: 31-48. |
[23] | Jennings D B, Jarnagin S T, Ebert D W . A modeling approach for estimating watershed impervious surface area from National Land Cover Data 92[J]. Photogrammetric Engineering & Remote Sensing, 2004,70(11):1295-1307. |
[24] | Sun Z C, Guo H D, Li X W , et al. Estimating urban impervious surfaces from Landsat-5 TM imagery using multilayer perceptron neural network and support vector machine[J]. Journal of Applied Remote Sensing, 2011,5(1):053501. |
[25] |
程熙, 沈占锋, 骆剑承 , 等. “全域一局部”不透水面信息遥感分步提取模型[J]. 遥感学报, 2013,17(5):1191-1205.
doi: DOI:10.11834/jrs.20132251 |
[ Cheng X, Shen Z F, Luo J C , et al. A “global-local” impervious surface area extraction model using multispectral remote sensing images[J]. Journal of Remote Sensing, 2013,17(5):1191-1205. ]
doi: DOI:10.11834/jrs.20132251 |
|
[26] | Zhou Y, Wang Y Q . Extraction of impervious surface areas from high spatial resolution imagery by multiple Agent segmentation and classification[J]. Photogrammetric Engineering & Remote Sensing, 2008,74(7):857-868. |
[27] | Sebari I, He D C . Automatic fuzzy object-based analysis of VHSR images for urban objects extraction[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2013,79(5):171-184. |
[28] | Phinn S, Stanford M, Scarth P , et al. Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques[J]. International Journal of Remote Sensing, 2002,23(20):4131-4153. |
[29] | Lu D S, Weng Q H . Spectral mixture analysis of the urban landscape in Indianapolis city with Landsat ETM+ Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2004,70(9):1053-1062. |
[30] | Weng Q H, Hu X F . Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008,46(8):2397-2406. |
[31] | Fan F L, Fan W, Weng Q H . Improving urban impervious surface mapping by linear spectral mixture analysis and using spectral indices[J]. Canadian Journal of Remote Sensing, 2015,41(6):577-586. |
[32] | Lu D S, Tian H Q, Zhou G M , et al. Regional mapping of human settlements in southeastern China with multisensorremotely sensed data[J]. Remote Sensing of Environment, 2008,112(9):3668-3679. |
[33] | Ma Q, He C Y, Wu J G , et al. Qua.pngying spatiotemporal patterns of urban impervious surfaces in China: An improved assessment using nighttime light data[J]. Landscape & Urban Planning, 2014,130(1):36-49. |
[34] | Guo W, Lu D S, Wu Y L , et al. Mapping impervious surface distribution with integration of SNNP VIIRS-DNB and MODIS NDVI data[J]. Remote Sensing, 2015,7(9):12459-12477. |
[35] | Li W F, Ouyang Z Y, Zhou W Q , et al. Effects of spatial resolution of remotely sensed data on estimating urban impervious surfaces[J]. Journal of Environmental Sciences, 2011,23(8):1375-1383. |
[36] | Xu H Q . Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033. |
[37] | Ridd M K . Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities[J]. International Journal of Remote Sensing, 1995,16(12):2165-2185. |
[1] | 刘天禹, 陈晓琳, 李强, 陈晋. 向心扩张指数构建及其在郑州都市圈城镇空间扩张中的应用[J]. 地球信息科学学报, 2022, 24(9): 1771-1784. |
[2] | 李玉, 张友水. 植被与不透水面的降温和增温效率分析方法[J]. 地球信息科学学报, 2021, 23(9): 1548-1558. |
[3] | 黄菲, 刘正才, 谢婷, 何永红. 一种基于NDISI的复合权重波段双差值不透水面提取指数[J]. 地球信息科学学报, 2021, 23(10): 1850-1860. |
[4] | 帅艳民, 马现伟, 曲歌, 邵聪颖, 刘涛, 刘守民, 黄华兵, 谷玲霄, 拉提帕·吐尔汗江, 梁继, 李玲. 协同多时相波谱特征的不透水面信息级联提取[J]. 地球信息科学学报, 2021, 23(1): 171-186. |
[5] | 李培林, 刘小平, 黄应淮, 张鸿辉. 基于GEE平台的广州市主城区不透水面时间序列提取[J]. 地球信息科学学报, 2020, 22(3): 638-648. |
[6] | 蔡博文,王树根,王磊,邵振峰. 基于深度学习模型的城市高分辨率遥感影像 不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1420-1429. |
[7] | 陈冰倩, 张友水, 程璟媛, 赵雪. 福州市地表温度热点及时空变化分析[J]. 地球信息科学学报, 2019, 21(5): 710-719. |
[8] | 樊智宇, 詹庆明, 刘慧民, 杨晨, 夏宇. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019, 21(2): 226-235. |
[9] | 向超, 朱翔, 胡德勇, 乔琨, 陈姗姗. 近20年京津唐地区不透水面变化的遥感监测[J]. 地球信息科学学报, 2018, 20(5): 684-693. |
[10] | 宋明明, 都金康, 郑文龙, 李成蹊, 卞国栋. 秦淮河流域近30年不透水面景观格局时空演变研究[J]. 地球信息科学学报, 2017, 19(2): 238-247. |
[11] | 梁志承, 赵耀龙, 付迎春. 耦合蚁群算法和SCS-CN水文模型的城市不透水面空间格局优化[J]. 地球信息科学学报, 2017, 19(10): 1315-1326. |
[12] | 周小驰, 刘咏梅, 杨海娟. 西安市城市边缘区空间识别与边界划分[J]. 地球信息科学学报, 2017, 19(10): 1327-1335. |
[13] | 程熙, 吴炜, 夏列钢, 罗瑞, 沈占锋. 集成夜间灯光数据与Landsat TM影像的不透水面自动提取方法研究[J]. 地球信息科学学报, 2017, 19(10): 1364-1374. |
[14] | 潘涛, 张弛, 杜国明, 董金玮, 迟文峰. 城乡不透水面增长格局及地表温度的响应特征研究[J]. 地球信息科学学报, 2017, 19(1): 134-142. |
[15] | 戴舒, 付迎春, 赵耀龙. 基于Cubist模型树的城市不透水面百分比遥感估算模型[J]. 地球信息科学学报, 2016, 18(10): 1399-1409. |
|