地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (9): 1467-1478.doi: 10.12082/dqxxkx.2019.190151
收稿日期:
2019-04-03
修回日期:
2019-07-01
出版日期:
2019-09-25
发布日期:
2019-09-24
作者简介:
覃 纹(1996-),女,广西钦州人,硕士生,主要从事合成孔径雷达干涉测量、资源环境遥感研究。E-mail: qinw0717@foxmail.com。
基金资助:
QIN Wen3,HUANG Qiuyan1,2,3,YU Lu3,*(),HU Baoqing1,2
Received:
2019-04-03
Revised:
2019-07-01
Online:
2019-09-25
Published:
2019-09-24
Contact:
YU Lu
Supported by:
摘要:
南宁作为北部湾经济区的核心城市及中国-东盟博览会的永久举办地,正处于城市地铁修建及工程建设的高峰期。南宁位于复杂地质水文条件的南宁盆地中西部,地铁施工及运行有可能引发地表沉降等潜在风险,但关于南宁地铁修建区的沉降规律系统的认识仍十分有限。利用永久性散射体雷达干涉测量技术(Permanent Scatterers InSAR,PS-InSAR)处理54景Sentinel-1A影像,监测了2017年4月-2018年12月南宁市区地表沉降信息。结果表明,监测期内南宁地表形变速率为-23.8~9.0 mm/a,研究区大部分区域稳定,沉降点分布零星;4个重点沉降区位于蒲庙镇、九曲湾农场、江南地铁站及北湖-万秀村-虎丘一带;重点沉降区形变曲线总体上随时间变化呈现出不均匀下降;沉降成因可能与膨胀土膨胀特性、弃土滑坡、施工作业、列车流量过大及地下水位下降有关。5条地铁沉降值均属于安全范围。研究表明,南宁雨季降水丰富,地铁修建区表土以松散的第四系覆盖层为主,下伏基岩以工程力学性质存在一定不稳定性的第三系膨胀土为主,建议利用PS-InSAR技术对沉降重点区域及地铁沿线开展长期监测。
覃纹,黄秋燕,庾露,胡宝清. 南宁在建地铁沿线地表沉降监测[J]. 地球信息科学学报, 2019, 21(9): 1467-1478.DOI:10.12082/dqxxkx.2019.190151
QIN Wen,HUANG Qiuyan,YU Lu,HU Baoqing. Surface Subsidence Monitoring during the Construction of Nanning Subways[J]. Journal of Geo-information Science, 2019, 21(9): 1467-1478.DOI:10.12082/dqxxkx.2019.190151
表2
Sentinel-1A卫星数据参数信息
时间 | 时间基线/d | 空间基线/m | 时间 | 时间基线/d | 空间基线/m | 时间 | 时间基线/d | 空间基线/m | |
---|---|---|---|---|---|---|---|---|---|
2017-04-03 | 0 | -35.0929 | 2017-11-05 | 216 | 45.2097 | 2018-06-09 | 432 | -24.6097 | |
2017-04-15 | 12 | -74.4984 | 2017-11-17 | 228 | 41.5198 | 2018-06-21 | 444 | -1.7339 | |
2017-04-27 | 24 | 70.6223 | 2017-11-29 | 240 | 15.9682 | 2018-07-03 | 456 | 73.8204 | |
2017-05-09 | 36 | -75.0670 | 2017-12-11 | 252 | 33.7829 | 2018-07-15 | 468 | 35.5915 | |
2017-05-21 | 48 | -43.8730 | 2017-12-23 | 264 | 82.5005 | 2018-07-27 | 480 | 47.1928 | |
2017-06-02 | 60 | -30.8616 | 2018-01-04 | 276 | 82.5183 | 2018-08-08 | 492 | 20.8403 | |
2017-06-14 | 72 | 10.9047 | 2018-01-16 | 288 | 46.8289 | 2018-08-20 | 504 | -36.5445 | |
2017-06-26 | 84 | 20.1468 | 2018-01-28 | 300 | 50.1835 | 2018-09-01 | 516 | -73.3495 | |
2017-07-08 | 96 | 67.6315 | 2018-02-09 | 312 | -20.2486 | 2018-09-13 | 528 | 29.7106 | |
2017-07-20 | 108 | 36.1572 | 2018-02-21 | 324 | -5.6931 | 2018-09-25 | 540 | 62.7836 | |
2017-08-01 | 120 | -50.6033 | 2018-03-05 | 336 | 0 | 2018-10-07 | 552 | 52.9528 | |
2017-08-13 | 132 | -61.7094 | 2018-03-17 | 348 | 28.3550 | 2018-10-19 | 564 | -55.9534 | |
2017-08-25 | 144 | 13.5000 | 2018-03-29 | 360 | 30.5529 | 2018-10-31 | 576 | -64.3076 | |
2017-09-06 | 156 | 70.6805 | 2018-04-10 | 372 | 8.8881 | 2018-11-12 | 588 | -17.6692 | |
2017-09-18 | 168 | -20.5977 | 2018-04-22 | 384 | 9.5435 | 2018-11-24 | 600 | 68.2421 | |
2017-09-30 | 180 | -65.7919 | 2018-05-04 | 396 | 37.1262 | 2018-12-06 | 612 | -4.2850 | |
2017-10-12 | 192 | -82.5454 | 2018-05-16 | 408 | 12.2794 | 2018-12-18 | 624 | 84.5637 | |
2017-10-24 | 204 | -49.4931 | 2018-05-28 | 420 | -6.0092 | 2018-12-30 | 636 | -27.8057 |
[1] | 唐嘉, 刘国祥, 宋云帆 , 等. PALSAR和ASAR PSI显著地表沉降探测与分析[J]. 遥感学报, 2015,19(6):1019-1029. |
[ Tang J, Liu G X, Song Y F , et al. Detection and analysis of significant surface subsidence in PALSAR and ASAR PSI[J]. Journal of Remote Sensing, 2015,19(6):1019-1029. ] | |
[2] | 李广宇, 张瑞, 刘国祥 , 等. Sentinel-1A TS-DInSAR京津冀地区沉降监测与分析[J]. 遥感学报, 2018,22(4):633-646. |
[ Li G Y, Zhang R, Liu G X , et al. Sentinel-1A TS-DInSAR settlement monitoring and analysis in beijing-tianjin-hebei region[J]. Journal of Remote Sensing, 2008,22(4):633-646. ] | |
[3] | 董山, 张永红, 李明巨 , 等. 时序InSAR的连云港及盐城北部地表沉降研究[J]. 测绘科学, 2019,44(3):57-62. |
[ Dong S, Zhang Y H, Li M J , et al. Study on land subsidence in lianyungang and northern yancheng in time series InSAR[J]. Science of Surveying and Mapping, 2019,44(3):57-62. ] | |
[4] | 张倍倍 . 合成孔径雷达干涉测量(InSAR)技术在地表沉降监测中的应用[J]. 西部资源, 2014(5):149-150. |
[ Zhang B B . Application of synthetic aperture radar interferometry (InSAR) technology in surface subsidence monitoring[J]. West Resources, 2014(5):149-150. ] | |
[5] | 范秋雁 . 膨胀岩与工程[M]. 北京: 科学出版社, 2008. |
[ Fan Q Y. Expansive rock and engineering[M]. Beijing: Science Press, 2008. ] | |
[6] | 李韵迪 . 南宁地铁3号线长岗路车站基坑变形特征研究[J]. 工程质量, 2018,36(4):68-73. |
[ Li Y D . Research on deformation characteristics of changgang road station foundation pit of nanning metro line 3[J]. Engineering Quality, 2018,36(4):68-73. ] | |
[7] | 何高峰, 罗先启, 范训益 , 等. 南宁地铁2号线岩溶风险分析和处理原则[J]. 铁道标准设计, 2018,62(5):86-90. |
[ He G F, Luo X Q, Fan X Y , et al. Karst risk analysis and treatment principles for nanning metro line 2[J]. Railway Standard Design, 2018,62(5):86-90. ] | |
[8] | 李金华, 宋涛, 朱海西 , 等. 南宁地铁2号线车站深基坑开挖变形规律研究[J]. 施工技术, 2017(19):37-40. |
[ Li J H, Song T, Zhu H X , et al. Study on deformation law of deep foundation pit excavation in station of nanning metro line 2[J]. Construction Technology, 2017(19):37-40. ] | |
[9] | 陈新年, 郭颖, 贺小俪 , 等. 南宁软岩地层地铁车站深基坑变形规律分析[J]. 施工技术, 2014,40(1):96-99,108. |
[ Chen X B, Guo Y, He X L, , et al. Deformation law analysis of deep foundation pit of subway station in soft rock strata of nanning[J]. Construction Technology, 2014,40(1):96-99,108. ] | |
[10] | 陈成全, 叶凤珍 . 南宁市修建地铁对南宁盆地松散岩类地下水的影响研究[J]. 工程建设与设计, 2017(14):30-31 |
[ Chen C Q, Ye F Z . Study on the influence of subway construction in nanning on loose rock groundwater in nanning basin[J]. Engineering Construction and Design, 2017(14):30-31. ] | |
[11] | 姜伏伟, 张发旺, 柳林 , 等. 南宁地铁施工降水诱发岩溶塌陷条件及安全防控措施[J]. 中国岩溶, 2018,37(3):415-420. |
[ Jiang F W, Zhang F W, Liu L , et al. Conditions of karst collapse induced by precipitation in nanning subway construction and safety prevention and control measures[J]. China Karst, 2018,37(3):415-420. ] | |
[12] | Ferretti A, Prati C, Rocca F . Nolinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geosicence and Remote Sensing, 2000,38:2202-2212. |
[13] | 刘凯斯, 宫辉力, 陈蓓蓓 . 基于InSAR数据的北京地铁6号线地面沉降监测分析[J]. 地球信息科学学报, 2018,20(1):128-137. |
[ Liu K S, Gong H L, Chen B B . Monitoring and analysis of ground subsidence of beijing metro line 6 based on InSAR data[J]. Journal of Earth Information Science, 2018,20(1):128-137. ] | |
[14] | 周玉营, 陈蜜, 宫辉力 , 等. 基于时序InSAR的京津高铁北京段地面沉降监测[J]. 地球信息科学学报, 2017,19(10):1393-1403. |
[ Zhou Y Y, Chen M, Gong H L , et al. Monitoring of ground subsidence in beijing section of beijing-tianjin high-speed railway based on time series InSAR[J]. Journal of Earth Information Science, 2017,19(10):1393-1403. ] | |
[15] | Yasser M, Freek V D M, Christoph H , et al. Using PS-InSAR to detect surface deformation in geothermal areas of west java in Indonesia[J]. International Journal of Applied Earth Observation and Geoinformation, 2018(64):386-396. |
[16] | 雷坤超, 贾三满, 陈蓓蓓 , 等. 基于PS-InSAR技术的廊坊市地面沉降监测研究[J]. 遥感技术与应用, 2013(28):1114-1119. |
[ Lei K C, Jia S M, Chen B B , et al. Research on land subsidence monitoring in langfang city based on PS-InSAR technology[J]. Remote Sensing Technology and Application, 2013(28):1114-1119. ] | |
[17] | 郭山川, 侯湖平, 张绍良 , 等. 时序InSAR在城市地铁工程区形变监测中的应用[J]. 测绘通报, 2017(8):92-99. |
[ Guo S C, Hou H P, Zhang S L , et al. Application of time series InSAR in deformation monitoring of urban subway engineering area[J]. Bulletin of Surveying and Mapping, 2017(8):92-99. ] | |
[18] | 罗得把 . 广西南宁盆地工程地质特征浅析[J]. 西部交通科技, 2006(5):72-74. |
[ Luo D Z . Analysis of engineering geological characteristics of nanning basin in guangxi[J]. Western Transportation Science & Technology, 2006(5):72-74. ] | |
[19] | 周洪月, 汪云甲, 闫世勇 , 等. 沧州地区地面沉降现状Sentinel-1A/B时序InSAR监测与分析[J]. 测绘通报, 2017(7):89-93. |
[ Zhou H Y, Wang Y J, Yan S Y , et al. Status of land subsidence in cangzhou area, sentinel-1A /B time series InSAR monitoring and analysis[J]. Bulletin of Surveying and Mapping, 2017(7):89-93. ] | |
[20] | 张艳梅, 王萍, 罗想 , 等. 利用Sentinel-1数据和SBAS-InSAR技术监测西安地表沉降[J]. 测绘通报, 2017(4):93-97. |
[ Zhang Y M, Wang P, Luo X , et al. Surface subsidence monitoring in xi 'an by sentinel-1 data and SBAS-InSAR[J]. Bulletin of Surveying and Mapping, 2017(4):93-97. ] | |
[21] | 陈继伟, 曾琪明, 焦健 , 等. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J]. 国土资源遥感, 2017,29(4):82-87. |
[ Chen J W, Zeng Q M, Jiao J , et al. SBAS time series analysis method for sentinel-1A satellite TOPS model data: A case study of the Yellow River delta region[J]. Remote Sensing of Land Resources, 2017,29(4):82-87. ] | |
[22] | Teije V D H, Martine M R, Nick C V D G , et al. Monitoring land subsidence in Yangon, Myanmar using Sentinel-1 persistent scatterer interferometry and assessment of driving mechanisms[J]. Remote Sensing of Environment, 2018,217:101-110. |
[23] | 邹财麟 . 山上倒垃圾上下瓦房塌后续:非法弃土埋隐患[N]. 南国早报, 2015-6-21(10). |
[ Zou C L . The collapse of the tiled house on the mountain after dumping garbage: illegal dumping and hidden danger[N]. South China Morning Post, 2015-6-21(10). ] | |
[24] | 杨和平, 湛文涛, 肖杰 , 等. 南宁膨胀土作路堤填料的土性试验[J]. 中国公路学报, 2011,24(1):1-7. |
[ Yang H P, Zhan W T, Xiao J , et al. Soil test of expansive soil as embankment filler in nanning[J]. China Highway Journal, 2011,24(1):1-7. ] | |
[25] | 肖杰, 杨和平, 李晗峰 , 等. 低应力条件下不同密度的南宁膨胀土抗剪强度试验[J]. 中国公路学报, 2013,26(6):15-37. |
[ Xiao J, Yang H P, Li H F , et al. Shear strength test of nanning expansive soil with different densities under low stress conditions[J]. China Highway Journal, 2013,26(6):15-37. ] | |
[26] | 唐迎春, 黄钟晖, 张凯 , 等. 南宁第三系浅表层风化泥岩物理力学及膨胀特性指标分析[J]. 工程地质学报, 2014,22(1):144-151. |
[ Tang Y C, Huang Z G, Zhang K , et al. Analysis of physical mechanics and expansion characteristics of tertiary weathered mudstone in nanning[J]. Journal of Engineering Geology, 2014,22(1):144-151. ] | |
[27] | 马少坤, 赵乃峰, 周东 , 等. 南宁膨胀土长期压缩特性研究[J]. 岩土力学, 2013,34(8):2280-2286. |
[ Ma S K, Zhao N F, Zhou D , et al. Study on long-term compression characteristics of expansive soil in nanning[J]. Rock and Soil Mechanics, 2013,34(8):2280-2286. ] | |
[28] | 黎兆齐 . 南宁站南宁东站昨送客15.3万人次[N]. 南宁晚报, 2017-10-1(4). |
[ Li Z Q . Nanning east station saw off 153, 000 passengers yesterday[N]. Nanning Evening News, 2017-10-1(4). ] | |
[29] | 赵鹏, 雷斌 . 轨道交通工程建设风险管理的研究[J]. 地下空间与工程学报, 2012,8(S2):1818-1823. |
[ Zhao P, Lei B . Research on risk management of rail transit engineering construction[J]. Chinese Journal of Underground Space and Engineering, 2012,8(S2):818-1823. ] | |
[30] | 刘琦, 岳国森, 丁孝兵 , 等. 佛山地铁沿线时序InSAR形变时空特征分析[J]. 武汉大学学报(信息科学版), 2019,44(7):1099-1106. |
[ Liu Q, Yue G S, Ding X B , et al. Temporal and spatial characteristics analysis of deformation along foshan subway using time series InSAR[J]. Journal of Wuhan University (Information Science Edition), 2019,44(7):1099-1106. ] | |
[31] | 朱茂, 沈体雁, 黄松 , 等. InSAR技术地铁沿线建筑物形变监测[J]. 国土资源遥感, 2019,31(2):196-203. |
[ Zhu M, Shen T Y, Huang S , et al. Deformation monitoring of buildings along the InSAR technology metro[J]. Remote Sensing of Land and Resources, 2019,31(2):196-203. ] | |
[32] | Daniele P, Zhi Y W, Hui L . Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,73:58-67. |
[33] | 葛大庆, 张玲, 王艳 , 等. 上海地铁10号线建设与运营过程中地面沉降效应的高分辨率InSAR监测及分析[J]. 上海国土资源, 2014,35(4):62-67. |
[ Ge D Q, Zhang L, Wang Y , et al. High-resolution InSAR monitoring and analysis of land subsidence effects during construction and operation of shanghai metro line 10[J]. Shanghai Land Resources, 2014,35(4):62-67. ] | |
[34] | 秦晓琼, 杨梦诗, 王寒梅 , 等. 高分辨率PS-InSAR在轨道交通形变特征探测中的应用[J]. 测绘学报, 2016,45(6):713-721. |
[ Qin X Q, Yang M S, Wang H M , et al. Application of high resolution PS-InSAR in the detection of deformation characteristics of rail transit[J]. Journal of Surveying and Mapping, 2016,45(6):713-721. ] | |
[35] | 李金华, 宋涛, 朱海西 , 等. 南宁地铁2号线车站深基坑开挖变形规律研究[J]. 施工技术, 2017,46(19):32-35. |
[ Li J H, Song T, Zhu H X , et al. Study on deformation law of deep foundation pit excavation of nanning metro line 2 station[J]. Construction Technology, 2017,46(19):32-35. ] | |
[36] | 李韵迪 . 南宁地铁3号线长堽路车站基坑变形特征研究[J]. 工程质量, 2018,36(4):68-73. |
[ Li Y D . Research on deformation characteristics of foundation pit of changgang road station of nanning subway line 3[J]. Engineering Quality, 2018,36(4):68-73. ] |
[1] | 罗秋雨, 乐阳, 谷岩岩. 城市地铁出行知识图谱嵌入表达的超参数选择[J]. 地球信息科学学报, 2023, 25(6): 1164-1175. |
[2] | 邝嘉恒, 邬群勇. 接驳地铁站的共享单车时空均衡性分析与吸引区域优化[J]. 地球信息科学学报, 2022, 24(7): 1337-1348. |
[3] | 黄盛, 李卫江, 朱梦茹, 刘振. 降雨事件对上海地铁通勤客流时空影响的精细尺度研究[J]. 地球信息科学学报, 2022, 24(2): 249-262. |
[4] | 段伟芳, 温小乐, 徐涵秋, 邓文慧. 基于光学与雷达影像变化检测的2020年鄱阳湖洪灾评估与分析[J]. 地球信息科学学报, 2022, 24(12): 2435-2447. |
[5] | 谭佩珊, 麦可, 张亚涛, 涂伟. 利用多源城市数据划定地铁站点吸引范围[J]. 地球信息科学学报, 2021, 23(4): 593-603. |
[6] | 高楹, 宋辞, 郭思慧, 裴韬. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1): 155-170. |
[7] | 赵鹏军, 曹毓书. 基于多源地理大数据与机器学习的地铁乘客出行目的识别方法[J]. 地球信息科学学报, 2020, 22(9): 1753-1765. |
[8] | 杨丹, 周亚男, 杨先增, 郜丽静, 冯莉. LSTM支持下时序Sentinel-1A数据的太白山区植被制图[J]. 地球信息科学学报, 2020, 22(12): 2445-2455. |
[9] | 陈杰, 李昂, 符峥, 李思倩, 王结臣. 公交模式对公共服务设施可达性的影响[J]. 地球信息科学学报, 2019, 21(7): 983-993. |
[10] | 黄铎, 冯江. 城市地铁站点商业价值数字化评价方法[J]. 地球信息科学学报, 2019, 21(3): 327-336. |
[11] | 郭唯娜, 柯长青, 范宇宾. 基于SAR干涉数据的东帕米尔高原冰川变化[J]. 地球信息科学学报, 2019, 21(11): 1790-1801. |
[12] | 孟斌, 黄松, 尹芹. 北京市居民地铁出行出发时间弹性时空分布特征研究[J]. 地球信息科学学报, 2019, 21(1): 107-117. |
[13] | 黄俊松, 曾琪明, 高胜, 焦健, 胡乐银. 适用于自然地表形变反演的小基线集方法[J]. 地球信息科学学报, 2018, 20(4): 440-451. |
[14] | 汤玲英, 刘雯, 杨东, 陈乐, 苏扬媚, 徐宪立. 基于面向对象方法的Sentinel-1A SAR在洪水监测 中的应用[J]. 地球信息科学学报, 2018, 20(3): 377-384. |
[15] | 祝秀星, 陈蜜, 宫辉力, 李小娟, 余洁, 朱琳, 周玉营, 李昱. 采用时序InSAR技术监测北京地铁网络沿线地面沉降[J]. 地球信息科学学报, 2018, 20(12): 1810-1819. |
|