地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (10): 2098-2107.doi: 10.12082/dqxxkx.2020.190423
周佳1,2(), 赵亚鹏2,3, 岳天祥2,3, 卢涛1,*(
)
收稿日期:
2019-08-05
修回日期:
2019-12-09
出版日期:
2020-10-25
发布日期:
2020-12-25
作者简介:
周佳(1996— ),女,四川德阳人,硕士生,研究方向为地理信息系统。E-mail:基金资助:
ZHOU Jia1,2(), ZHAO Yapeng2,3, YUE Tianxiang2,3, LU Tao1,*(
)
Received:
2019-08-05
Revised:
2019-12-09
Online:
2020-10-25
Published:
2020-12-25
Contact:
LU Tao
Supported by:
摘要:
卫星遥感反演得到的地表温度可用于近地表气温的估算,但现有方法的估算精度仍有进一步提升的空间。为了获取空间上连续且精度较高的近地表气温,本研究以四川省为例,首次将高精度曲面建模(HASM)用于遥感和气温实测数据的融合,并将综合了气温、地表温度、海拔、坡度、坡向的地理加权回归(GWR)拟合结果作为HASM模型的初始温度场,进而采用此种结合HASM和GWR的求解算法(HASM-GWR),融合MOD11C3地表温度产品与190个气象台站的气温实测数据,开展省级尺度近地表气温估算,并通过比较HASM-GWR、GWR以及普通线性回归(OLS)3种方法的估算精度,评估各模型对近地表气温的估算效果。结果表明,相比于传统估算模型,采用HASM-GWR数据融合方法能有效提高近地表气温的估算精度。采用该方法的近地表气温估算残差,72%介于-1~1 ℃,90%介于-2~2 ℃;且与GWR和OLS模型相比,估算结果的均方根误差(RMSE)分别降低了25.42%和39.83%。
周佳, 赵亚鹏, 岳天祥, 卢涛. 结合HASM和GWR方法的省级尺度近地表气温估算[J]. 地球信息科学学报, 2020, 22(10): 2098-2107.DOI:10.12082/dqxxkx.2020.190423
ZHOU Jia, ZHAO Yapeng, YUE Tianxiang, LU Tao. Near Surface Air Temperature Estimation by Combining HASM with GWR Model on a Provincial Scale[J]. Journal of Geo-information Science, 2020, 22(10): 2098-2107.DOI:10.12082/dqxxkx.2020.190423
表2
基于3种方法的各月误差对比
1月 | 4月 | 7月 | 10月 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE/℃ | MRE/% | RMSE/℃ | MAE/℃ | MRE/% | RMSE/℃ | MAE/℃ | MRE/% | RMSE/℃ | MAE/℃ | MRE/% | RMSE/℃ | ||||
OLS | 0.96 | 15.68 | 1.47 | 1.12 | 12.38 | 1.80 | 1.11 | 5.31 | 1.66 | 1.07 | 10.84 | 1.67 | |||
GWR | 0.94 | 16.08 | 1.41 | 0.98 | 11.63 | 1.50 | 1.04 | 4.85 | 1.49 | 0.92 | 9.81 | 1.52 | |||
HASM-GWR | 0.91 | 15.21 | 1.39 | 0.89 | 9.21 | 1.12 | 0.78 | 3.54 | 1.13 | 0.79 | 7.42 | 1.07 |
[1] | 柯灵红, 王正兴, 宋春桥, 等. 青藏高原东北部MODIS地表温度重建及其与气温对比分析[J]. 高原气象, 2011,30(2):277-287. |
[ Ke L H, Wang Z X, Song C Q, et al. Reconstruction of MODIS land surface temperature in northeastQinghai-Xizang plateau and its comparison with air temperature[J]. Plateau Meteorology, 2011,30(2):277-287. ] | |
[2] | Lin X H, Zhang W, Huang Y, et al. Empirical estimation of near-surface airtemperature in China from MODIS LST Data by considering physiographic features[J]. Remote Sensing, 2016,8(8):629. |
[3] | Folguera G, Bastias D A, Caers J, et al. An experimental test of the role of environmental temperature variability onectotherm molecular, physiological and life-history traits: Implications forglobal warming[J]. Comparative Biochemistry and Physiology, 2011,159(3):242-246. |
[4] | 彭彬, 周艳莲, 高苹, 等. 气温插值中不同空间插值方法的适用性分析——以江苏省为例[J]. 地理信息科学学报, 2011,13(4):539-548. |
[ Peng B, Zhou Y L, Gao P, et al. Suitability assessment of different interpolation methods in thegridding process of station collected air temperature: A case study in Jiangsu province, China[J]. Journal of Geo-information Science, 2011,13(4):539-548. ] | |
[5] | Kayikci E T, Kazanci S Z. Comparison of regression-based and combinedversions of inverse distance weighted methods for spatialinterpolation of daily mean temperature data[J]. Arabian Journal of Geosciences, 2016,9(17):690. |
[6] | Hadi S J, Tombul M. Comparison of spatial interpolation methods of precipitationand temperature using multiple integration periods[J]. Journal of the Indian Society of Remote Sensing, 2018,46(7):1187-1199. |
[7] | 岳天祥 等. 地球表层系统模拟分析原理与方法[M]. 北京: 科学出版社, 2017. |
[ Yue T X, et al. Principles and methods of simulation analysis of earth surface system[M]. Beijing: Science press, 2017. ] | |
[8] | 姚永慧, 张百平, 韩芳. 基于Modis地表温度的横断山区气温估算及其时空规律分析[J]. 地理学报, 2011,66(7):917-927. |
[ Yao Y H, Zhang B P, Han F. MODIS-based air temperature estimation in the Hengduan mountains and its spatio-temporal analysis[J]. Acta Geographica Sinica, 2011,66(7):917-927. ] | |
[9] | 徐伟燕, 孙睿, 金志凤, 等. 基于MODIS 数据的近地表气温估算[J]. 气象与环境科学, 2015,38(1):1-6. |
[ Xu W Y, Sun R, JinZ F, et al. Estimation of near surface air temperature based on MODIS data[J]. Meteorological and Environmental Sciences, 2015,38(1):1-6. ] | |
[10] | 张丽文, 黄敬峰, 王秀珍. 气温遥感估算方法研究综述[J]. 自然资源学报2014, 29(3):540-552. |
[ Zhang L W, Huang J F, Wang X Z. A review on air temperature estimation by satellite thermal infrared remote sensing[J]. Journal of Natural Resources, 2014,29(3):540-552. ] | |
[11] | Schuch F, Marpu P, Masri D, et al. Estimation of urban air temperature from a rural station using remotely sensed thermal infrared data[J]. Energy Procedia, 2017,143:519-525. |
[12] | Janatian N, Sadeghi M, Sanaeinejad S H, et al. A statistical framework for estimating air temperature using MODIS land surface temperature data[J]. International Journal of Climatology, 2017,37(3):1181-1194. |
[13] | Sun Y J, Wang J F, Zhang R H, et al. Air temperature retrieval from remote sensing data based on thermodynamics[J]. Theoretical and Applied Climatology, 2005,80(1):37-48. |
[14] | Nieto H, Sandholt I, Aguado I, et al. Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula[J]. Remote Sensing of Environment, 2011,115(1):107-116. |
[15] | Zhu W B, Lu A F, Jia S F. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products[J]. Remote Sensing of Environment, 2013,130:62-73. |
[16] | Yang Y Z, Cai W H, Yang J. Evaluation of MODIS land surface temperaturedata to estimate near-surface air temperature innortheast China[J]. Remote Sensing, 2017,9(5):410. |
[17] | Yoo C, Im J, Park S, et al. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,137:149-162. |
[18] | 姚永慧, 张百平. 基于MODIS数据的青藏高原气温与增温效应估算[J]. 地理学报, 2013,68(1):95-107. |
[ Yao Y H, Zhang B P. MODIS-based estimation of air temperature andheating-up effect of the Tibetan Plateau[J]. Acta Geographica Sinica, 2013,68(1):95-107. ] | |
[19] | Chen F R, Liu Y, Liu Q, et al. A statistical method based on remote sensing for the estimation of air temperature in China[J]. International Journal of Climatology, 2015,35(8):2131-2143. |
[20] | Wang M M, He G J, Zhang Z M, et al. Estimation of monthly near surface air temperature using geographically weighted regression in China. ISPRS-International Archives of the Photogrammetry[J]. Remote Sensing and Spatial Information Sciences, 2018,3:1747-1750. |
[21] | 赵明伟, 岳天祥, 赵娜. 高精度曲面建模优化方案[J]. 中国图像图形学报, 2014,19(2):290-296. |
[ Zhao M W, Yue TX, Zhao N. HASM optimization based on the improved difference scheme[J]. Journal of Image and Graphics, 2014,19(2):290-296. ] | |
[22] | 赵明伟, 岳天祥. 高精度面建模方法研究进展与分类[J]. 地理科学进展, 2016,35(4):401-408. |
[ Zhao M W, Yue T X. Classification of high accuracy surface modeling (HASM) methods and their recent developments[J]. Progress in Geography, 2016,35(4):401-408. ] | |
[23] | 范泽孟, 岳天祥, 陈传法, 等. 中国气温与降水的时空变化趋势分析[J]. 地球信息科学学报, 2011,13(4):526-533. |
[ Fan Z M, Yue T X, Chen C F, et al. Spatial change trends of temperature and precipitation in China[J]. Journal of Geo-information Science, 2011,13(4):526-533. ] | |
[24] | 李晗, 赵娜, 岳天祥, 等. 基于HASM方法的黑河流域潜在蒸发量的模拟[J]. 地球信息科学学报, 2017,19(11):1466-1474. |
[ Li H, Zhao N, Yue T X, et al. Simulation of potential evapotranspiration in Heihe River Basin based on HASM[J]. Journal of Geo-information Science, 2017,19(11):1466-1474. ] | |
[25] | Yue T X, Zhang L L, Zhao M L, et al. Space- and ground-based CO2 measurements: a review[J]. Science China-Earth Sciences, 2016,59(11):2089-2097. |
[26] | Fotheringham A S, Charlton M E, Brunsdon C. The geography of parameter space:an investigation into spatial non-station- arity[J]. I nternational Journal of Geographical Information Systems, 1996,10(5):605-627. |
[27] | 饶恩明, 肖燚. 四川省生态系统土壤保持功能空间特征及其影响因素. 生态学报. 2018,38(24):8741-8749. |
[ Rao E M, Xiao Y. Spatial characteristics and effects of soil conservation service in Sichuan Province[J]. Acta Ecologica Sinica, 2018,38(24):8741-8749. ] | |
[28] |
钟静, 卢涛. 基于地形起伏度的中国西南地区人口集疏格局演化研究[J]. 生态学报, 2018,38(24):8849-8860.
doi: 10.5846/stxb201712292352 |
[ Zhong J, Lu T. Spatial pattern of population distribution and its correlation with relief amplitude in southwestern China[J]. Acta Ecologica Sinica, 2018,38(24):8849-8860. ] | |
[29] |
白琳, 徐永明, 何苗, 等. 基于随机森林算法的近地表气温遥感反演研究[J]. 地球信息科学学报, 2017,19(3):390-397.
doi: 10.3724/SP.J.1047.2017.00390 |
[ Bai L, Xu Y M, He M, et al. Remote sensing inversion of near surface air temperature based on random forest[J]. Journal of Geo-information Science, 2017,19(3):390-397.] | |
[30] | 徐永明, 覃志豪, 沈艳. 基于MODIS数据的长江三角洲地区近地表气温遥感反演[J]. 农业工程学报, 2011,27(9):63-68. |
[ Xu Y M, Qin Z H, Shen Y. Estimation of near surface air temperature from MODIS data in the Yangtze River Delta[J]. Transactions of the CSAE, 2011,27(9):63-68.] |
[1] | 尚明, 任阳阳, 宋宏利, 姚亚楠, 白磊, 李悦, 马杰. IMERG和GSMaP对中国极端降水监测能力评估[J]. 地球信息科学学报, 2023, 25(9): 1813-1826. |
[2] | 邢子瑶, 董芯蕊, 昝糈莉, 杨帅, 黄梓焓, 刘哲, 张晓东. 融合VGI和遥感等多源数据的洪涝范围提取与模拟方法[J]. 地球信息科学学报, 2023, 25(9): 1869-1881. |
[3] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[4] | 谭德明, 饶佳艺. 深圳市都市型滨水空间活力影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 809-822. |
[5] | 吴子豪, 刘耀林, 冯向阳, 陈奕云, 闫庆武. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573-587. |
[6] | 徐繁树, 王保云, 韩俊. 一种沟谷型潜在泥石流危险性评价方法:基于多源数据融合的卷积神经网络[J]. 地球信息科学学报, 2023, 25(3): 588-605. |
[7] | 贝祎轩, 陈传法, 王鑫, 孙延宁, 何青鑫, 李坤禹. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276. |
[8] | 焦怀瑾, 陈崇成, 黄洪宇. 结合ICESat-2和GEDI的中国东南丘陵地区ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2023, 25(2): 409-420. |
[9] | 陈宇, 陈思, 李杰, 李怀展, 高延东, 王勇, 杜培军. 融合主成分时空分析与时序InSAR的高精度地表形变信息提取——以徐州地区为例[J]. 地球信息科学学报, 2023, 25(12): 2402-2417. |
[10] | 王敏璇, 阳璇, 查启航, 孙睿, 任娜. 顾及空间分布的改进薄板样条矢量数据几何精度降低方法[J]. 地球信息科学学报, 2023, 25(11): 2120-2133. |
[11] | 谢昭颖, 沈润平, 黄安奇, 邢雅洁, 王云宇, 刘晓利. 基于改进S-G滤波和非监督分类局部核回归的中国LAI时序数据融合研究[J]. 地球信息科学学报, 2023, 25(11): 2249-2267. |
[12] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[13] | 徐肖, 李娅婷, 樊辉. 基于伪纯像元的精度评价策略及其应用[J]. 地球信息科学学报, 2022, 24(8): 1617-1630. |
[14] | 闵杰, 张永生, 于英, 吕可枫, 王自全, 张磊. 增强型遥感影像SRGAN算法及其在三维重建精度提升中的应用[J]. 地球信息科学学报, 2022, 24(8): 1631-1644. |
[15] | 郑迎辉, 张艳, 王涛, 赵祥, 张昆, 王龙辉. 基于ICESat-2数据的高程控制点提取和精度验证[J]. 地球信息科学学报, 2022, 24(7): 1234-1244. |
|