地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (1): 41-56.doi: 10.12082/dqxxkx.2020.190491
邓敏1, 蔡建南1,*(), 杨文涛2, 唐建波1, 杨学习1, 刘启亮1, 石岩1
收稿日期:
2019-09-04
修回日期:
2019-11-25
出版日期:
2020-01-25
发布日期:
2020-04-08
作者简介:
邓 敏(1974— ),男,江西临川人,教授,博士生导师,从事时空数据挖掘与信息服务研究。E-mail:dengmin@csu.edu.cn
基金资助:
DENG Min1, CAI Jiannan1,*(), YANG Wentao2, TANG Jianbo1, YANG Xuexi1, LIU Qiliang1, SHI Yan1
Received:
2019-09-04
Revised:
2019-11-25
Online:
2020-01-25
Published:
2020-04-08
Contact:
CAI Jiannan
Supported by:
摘要:
多模态地理大数据时空分析旨在融合地理大数据的多模态信息发现有价值的时空分布规律、异常表现、关联模式与变化趋势,是全空间信息系统的核心研究内容,并有望成为推进地理学人地关系研究的重要突破口。为应对地理大数据时代的新机遇与挑战,本文围绕4类核心的时空分析方法(时空聚类分析、时空异常分析、时空关联分析与时空预测分析),系统归纳了国内外研究现状,探讨了时空分析中多尺度建模、多视角协同、多特征认知与多特性表达的研究难点。进而,介绍了多模态地理大数据时空聚类、异常、关联与预测分析模型,更加全面、客观、精准地认知与理解时空大数据中潜在的地理知识,并且能够在气象环境监测、公共安全管理、城市设施规划等多个应用领域发挥关键作用。
邓敏, 蔡建南, 杨文涛, 唐建波, 杨学习, 刘启亮, 石岩. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1): 41-56.DOI:10.12082/dqxxkx.2020.190491
DENG Min, CAI Jiannan, YANG Wentao, TANG Jianbo, YANG Xuexi, LIU Qiliang, SHI Yan. Spatio-temporal Analysis Methods for Multi-modal Geographic Big Data[J]. Journal of Geo-information Science, 2020, 22(1): 41-56.DOI:10.12082/dqxxkx.2020.190491
[1] | Goodchild M F . Geographical information science[J]. International Journal of Geographical Information Systems, 1992,6(1):31-45. |
[2] | Langran G, Chrisman N R . A framework for temporal geographic information[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1988,25(3):1-14. |
[3] | Shekhar S, Jiang Z, Ali R , et al. Spatiotemp oral data mining: A computational perspective[J]. ISPRS International Journal of Geo-information, 2015,4(4):2306-2338. |
[4] | Marr B . Big data: Using smart big data, analytics and metrics to make better decisions and improve performance[M]. Chichester, UK: JohnWiley& Sons, 2015. |
[5] | 傅伯杰, 冷疏影, 宋长青 . 新时期地理学的特征与任务[J]. 地理科学, 2015,35(8):939-945. |
[ Fu B J, Leng S Y, Song C Q . The characteristics and tasks of geography in the new era[J]. Scientia GeographicaSinica, 2015,35(8):939-945. ] | |
[6] | Vatsavai R R, Ganguly A, Chandola V , et al. Spatiotemporal data mining in the era of big spatial data: Algorithms and applications[C]// Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. ACM, 2012: 1-10. |
[7] | Li S, Dragicevic S, Castro F A , et al. Geospatial big data handling theory and methods: A review and research challenges[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,115:119-133. |
[8] | 朱庆, 付萧 . 多模态时空大数据可视分析方法综述[J]. 测绘学报, 2017,46(10):1672-1677. |
[ Zhu Q, Fu X . The review of visual analysis methods of multi-modal spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1672-1677. ] | |
[9] | 杨振山, 龙瀛, DOUAY Nicolas . 大数据对人文—经济地理学研究的促进与局限[J]. 地理科学进展, 2015,34(4):410-417. |
[ Yang Z S, Long Y, DOUAY Nicolas . Opportunities and limitations of big data applications to human and economic geography: The state of the art[J]. Progress in Geography, 2015,34(4):410-417. ] | |
[10] | 华一新, 周成虎 . 面向全空间信息系统的多粒度时空对象数据模型描述框架[J]. 地球信息科学学报, 2017,19(9):1142-1149. |
[ Hua Y X, Zhou C H . Description frame of data model of multi-granularity spatio-temporal object for pan-spatial information system[J]. Journal of Geo-information Science, 2017,19(9):1142-1149. ] | |
[11] | 裴韬, 刘亚溪, 郭思慧 , 等. 地理大数据挖掘的本质[J]. 地理学报, 2019,74(3):586-598. |
[ Pei T, Liu Y X, Guo S H , et al. Principle of big geodata mining[J]. Acta GeographicaSinica, 2019,74(3):586-598. ] | |
[12] | 周成虎 . 全空间地理信息系统展望[J]. 地理科学进展, 2015,34(2):129-131. |
[ Zhou C H . Prospects on pan-spatial information system[J]. Progress in Geography, 2015,34(2):129-131. ] | |
[13] | 华一新 . 全空间信息系统的核心问题和关键技术[J]. 测绘科学技术学报, 2016,33(4):331-335. |
[ Hua Y X . The core problems and key technologies of pan-spatial information system[J]. Journal of Geomatics Science and Technology, 2016,33(4):331-335. ] | |
[14] | 宋长青 . 地理学研究范式的思考[J]. 地理科学进展, 2016,35(1):1-3. |
[ Song C Q . On paradigms of geographical research[J]. Progress in Geography, 2016,35(1):1-3. ] | |
[15] | 李德仁, 王树良, 史文中 , 等. 论空间数据挖掘和知识发现[J]. 武汉大学学报·信息科学版, 2001,26(6):491-499. |
[ Li D R, Wang S L, Shi W Z , et al. On spatial data mining and knowledge discovery (SDMKD)[J]. Geomatics and Information Science of Wuhan University, 2001,26(6):491-499. ] | |
[16] | 李德仁, 王树良, 李德毅 , 等. 论空间数据挖掘和知识发现的理论与方法[J]. 武汉大学学报·信息科学版, 2002,27(3):221-233. |
[ Li D R, Wang S L, Li D Y , et al. Theories and technologies of spatial data mining and knowledge discovery[J]. Geomatics and Information Science of Wuhan University, 2002,27(3):221-233. ] | |
[17] | 王劲峰, 葛咏, 李连发 , 等. 地理学时空数据分析方法[J]. 地理学报, 2014,69(9):1326-1345. |
[ Wang J F, Ge Y, Li L F , et al. Spatiotemporal data analysis in geography[J]. Acta GeographicaSinica, 2014,69(9):1326-1345. ] | |
[18] | Deng M, Fan Z, Liu Q , et al. A hybrid method for interpolating missing data in heterogeneous spatio-temporal datasets[J]. ISPRS International Journal of Geo-information, 2016,5(2):13. |
[19] | 何占军, 邓敏, 蔡建南 , 等. 顾及背景知识的多事件序列关联规则挖掘方法[J]. 武汉大学学报·信息科学版, 2018,43(5):766-772. |
[ He Z J, Deng M, Cai J N , et al. A context-based association rules mining method for multiple event sequences[J]. Geomatics and Information Science of Wuhan University, 2018,43(5):766-772. ] | |
[20] | He Z, Deng M, Cai J , et al. Mining spatiotemporal association patterns from complex geographic phenomena[J]. International Journal of Geographical Information Science, 2019:1-26. https://doi.org/10.1080/1365 8816. 2019. 1566549 |
[21] | Deng M, Yang W, Liu Q , et al. Heterogeneous space-time artificial neural networks for space-time series prediction[J]. Transactions in GIS, 2018,22(1):183-201. |
[22] | 邓敏, 刘启亮, 李光强 , 等. 空间聚类分析及应用[M]. 北京: 科学出版社, 2011. |
[ Deng M, Liu Q L, Li G Q , et al. Spatial clustering methods and applications[M]. Beijing: Science Press, 2011. ] | |
[23] | Guo D . Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP)[J]. International Journal of Geographical Information Science, 2008,22(7):801-823. |
[24] | Liu Q, Liu W, Tang J , et al. Permutation-test-based clustering method for detection of dynamic patterns in spatio-temporal datasets[J]. Computers, Environment and Urban Systems, 2019,75:204-216. |
[25] | Birant D, Kut A . ST-DBSCAN: An algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering, 2007,60(1):208-221. |
[26] | Pei T, Zhou C, Zhu A-X , et al. Windowed nearest neighbour method for mining spatio-temporal clusters in the presence of noise[J]. International Journal of Geographical Information Science, 2010,24(6):925-948. |
[27] | Kulldorff M, Heffernan R, Hartman J , et al. A space-time permutation scan statistic for disease outbreak detection[J]. PLOS Medicine, 2005,2(3):216-224. |
[28] | Bação F, Lobo V, Painho M . The self-organizing map, the Geo-SOM, and relevant variants for geosciences[J]. Computers &Geosciences, 2005,31(2):155-163. |
[29] | 汪中, 刘贵全, 陈恩红 . 一种优化初始中心点的K-means算法[J]. 模式识别与人工智能, 2009,22(2):299-304. |
[ Wang Z, Liu G Q, Chen E H . A k-means algorithm based on optimized initial center points[J]. Pattern Recognition and Artificial Intelligence, 2009,22(2):299-304. ] | |
[30] | Bai L, Cheng X, Liang J , et al. Fast density clustering strategies based on the k-means algorithm[J]. Pattern Recognition, 2017,71(1):375-386. |
[31] | Lin C R, Chen M S . Combining partitional and hierarchical algorithms for robust and efficient data clustering with cohesion self-merging[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(2):145-159. |
[32] | 焦利民, 张欣, 毛立凡 . 自组织双重空间聚类算法的城市扩张结构分析应用[J]. 地球信息科学学报, 2015,17(6):638-643. |
[ Jiao L M, Zhang X, Mao L F . Self-organizing dual spatial clustering algorithm and its application in the analysis of urban sprawl structure[J]. Journal of Geo-information Science, 2015,17(6):638-643. ] | |
[33] | Joshi D, Samal A, Soh L K . Spatio-temporal polygonal clustering with space and time as first-class citizens[J]. Geo-informatica, 2012,17(2):387-412. |
[34] | Liu Q, Deng M, Shi Y , et al. A density-based spatial clustering algorithm considering both spatial proximity and attribute similarity[J]. Computers & Geosciences, 2012,46:296-309. |
[35] | 石岩, 刘启亮, 邓敏 , 等. 融合图论与密度思想的混合空间聚类方法[J]. 武汉大学学报·信息科学版, 2012,37(11):1276-1280. |
[ Shi Y, Liu Q L, Deng M , et al. A hybrid spatial clustering method based on graph theory and spatial density[J]. Geomatics and Information Science of Wuhan University, 2012,37(11):1276-1280. ] | |
[36] | Han J, Zhu L, Kulldorff M , et al. Using gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics[J]. International Journal of Health Geographics, 2016,15(1):27. |
[37] | Lin C R, Liu K H, Chen M S . Dual clustering: Integrating data clustering over optimization and constraint domains[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(5):628-637. |
[38] | 吉根林, 孙鸿艳, 赵斌 . 时空轨迹群体运动模式挖掘研究进展[J]. 南京航空航天大学学报, 2016,48(5):615-624. |
[ Ji G L, Sun H Y, Zhao B . Research progress in group moving patterns mining of spatio-temporal trajectories[J]. Journal of Nanjing University of Aeronautics & Aeronautics, 2016,48(5):615-624. ] | |
[39] | 龚玺, 裴韬, 孙嘉 , 等. 时空轨迹聚类方法研究进展[J]. 地理科学进展, 2011,30(5):522-534. |
[ Gong X, Pei T, Sun J , et al. Review of the research progresses in trajectory clustering methods[J]. Progress in Geography, 2011,30(5):522-534. ] | |
[40] | 刘文凯, 唐建波, 蔡建南 , 等. 面向城市交通应用的移动对象聚类算法比较研究[J]. 地理与地理信息科学, 2016,32(6):69-74. |
[ Liu W K, Tang J B, Cai J N , et al. Algorithm comparison for clustering of moving objects in traffic system[J]. Geography and Geo-information Science, 2016,32(6):69-74. ] | |
[41] | Han J, Kamber M, Pei J . Data mining: Concepts and techniques, third edition[M]. Morgan Kaufman, San Francisco, 2012. |
[42] | 邓敏, 石岩, 龚健雅 , 等. 时空异常探测方法研究综述[J]. 地理与地理信息科学, 2016,32(6):43-50. |
[ Deng M, Shi Y, Gong J Y , et al. A summary of spatio-temporal outlier detection[J]. Geography and Geo-Information Science, 2016,32(6):43-50. ] | |
[43] | Campos G O, Zimek A, Jörg Sander , et al. On the evaluation of unsupervised outlier detection: Measures, datasets, and an empirical study[J]. Data Mining and Knowledge Discovery, 2016,30(4):891-927. |
[44] | Hawkins D . Identification of outliers[M]. London: Chapman and Hall, 1980. |
[45] | Shekhar S, Lu C T, Zhang P . A unified approach to detecting spatial outliers[J]. Geo-informatica, 2003,7(2):139-166. |
[46] | Cheng T, Li Z . A multiscale approach for spatio-temporal outlier detection[J]. Transactions in GIS, 2006,10(2):253-263. |
[47] | Knorr E M, Ng R T . Algorithms for mining distance-based outliers in large datasets[C]// Proceedings of the International Conference on Very Large Data Bases, 1998,98:392-403. |
[48] | Breunig M M, Kriegel H P, Ng R T , et al. LOF: Identifying density based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000,29(2):93-104. |
[49] | Shi Y, Deng M, Yang X , et al. Adaptive detection of spatial point event outliers using multilevel constrained delaunay triangulation[J]. Computers, Environment and Urban Systems, 2016,59:164-183. |
[50] | Chawla S, Sun P . SLOM: A new measure for local spatial outliers[J]. Knowledge & Information Systems, 2006,9(4):412-429. |
[51] | Chen D, Lu C T, Kou Y , et al. On detecting spatial outliers[J]. Geo-informatica, 2008,12(4):455-475. |
[52] | 邓敏, 刘启亮, 李光强 . 采用聚类技术探测空间异常[J]. 遥感学报, 2010,14(5):944-958. |
[ Deng M, Liu Q L, Li G Q . Spatial outlier detection method based on spatial clustering[J]. Journal of Remote Sensing, 2010,14(5):944-958. ] | |
[53] | Lu C T, Raimundo F, Liu X , et al. A graph-based approach to detect abnormal spatial points and regions[J]. International Journal on Artificial Intelligence Tools, 2011,20(4):721-751. |
[54] | Shi Y, Deng M, Yang X , et al. A spatial anomaly points and regions detection method using multi-constrained graphs and local density[J]. Transactions in GIS, 2017,21(2):376-405. |
[55] | Lee J G, Han J, Li X . Trajectory outlier detection: A partition-and-detect framework[C]// Proceedings of the IEEE International Conference on Data Engineering, 2008: 140-149. |
[56] | 毛嘉莉, 金澈清, 章志刚 , 等. 轨迹大数据异常检测:研究进展及系统框架[J]. 软件学报, 2017,28(1):17-34. |
[ Mao J L, Jin C Q, Zhang Z G , et al. Anomaly detection for trajectory big data: Advancements and framework[J]. Journal of Software, 2017,28(1):17-34. ] | |
[57] | Birant D, Kut A . Spatio-temporal outlier detection in large databases[J]. Journal of Computering and Information Technology, 2006,14(4):291-297. |
[58] | Wu E, Liu W, Chawla S . Spatio-temporal outlier detection in precipitation data[C]// Proceedings of the International Workshop on Knowledge Discovery from Sensor Data. Springer, Berlin, Heidelberg, 2008: 115-133. |
[59] | 刘启亮, 邓敏, 王佳璆 , 等. 时空一体化框架下时空异常探测[J]. 遥感学报, 2011,15(3):457-474. |
[ Liu Q L, Deng M, Wang J Q , et al. Spatio-temporal outliers detection within the space-time framework[J]. Journal of Remote Sensing, 2011,15(3):457-474. ] | |
[60] | George G, Yorgos N . A fuzzy index for detecting spatiotemporal outliers[J]. Geo-informatica, 2012,16:597-619. |
[61] | Telang A, Deepak P, Joshi S , et al. Detecting localized homogeneous anomalies over spatio-temporal data[J]. Data Mining & Knowledge Discovery, 2014,28(5-6):1480-1502. |
[62] | Ernst M, Haesbroeck G . Comparison of local outlier detection techniques in spatial multivariate data[J]. Data Mining & Knowledge Discovery, 2017,31(2):1-29. |
[63] | Gupta M, Gao J, Aggarwal C C , et al. Outlier detection for temporal data: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2014,26(9):2250-2267. |
[64] | Shi Y, Deng M, Yang X , et al. Detecting anomalies in spatio-temporal flow data by constructing dynamic neighbourhoods[J]. Computers, Environment and Urban Systems, 2018,67:80-96. |
[65] | Schubert E, Zimek A, Kriegel H P . Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection[J]. Data Mining & Knowledge Discovery, 2014,28(1):190-237. |
[66] | Liu X, Chen F, Lu C T . On detecting spatial categorical outliers[J]. GeoInformatica, 2014,18(3):501-536. |
[67] | Papadimitriou S, Faloutsos C . Cross-outlier detection[C]// Proceedings of the International Symposium on Spatial and Temporal Databases. Springer, Berlin, Heidelberg, 2003: 199-213. |
[68] | Janeja V P, Palanisamy R . Multi-domain anomaly detection in spatial datasets[J]. Knowledge & Information Systems, 2013,36(3):749-788. |
[69] | Singh A K, Lalitha S . A novel spatial outlier detection technique[J]. Communication in Statistics-Theory and Methods, 2018,47(1):247-257. |
[70] | Zheng Y, Zhang H, Yu Y . Detecting collective anomalies from multiple spatio-temporal datasets across different domains[C]// Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2015: 1-10. |
[71] | Palacio S M . Abnormal pattern prediction: Detecting fraudulent insurance property claims with semi-supervised machine-learning[J]. Data Science Journal, 2019,18(1):1-15. |
[72] | Agrawal R, Srikant R . Fast algorithms for mining association rules[C]// Proceedings of the 20 th International Conference on Very Large Data Bases. Santiago, Chile , 1994,1215:487-499. |
[73] | Shekhar S, Huang Y . Co-location rules mining: A summary of results[C]// Proceedings of the Spatio-Temporal Symposium on Databases, 2001. |
[74] | Koperski K, Han J . Discovery of spatial association rules in geographic information databases[C]// Proceedings of the International Symposium on Spatial Databases. Springer Berlin Heidelberg, 1995: 47-66. |
[75] | Li G Q, Deng M, Zhu J J . Spatial association rules mining methods based on voronoi diagram[J]. Geomatics and Information Science of Wuhan University, 2008,33(12):1242-1245. |
[76] | 田晶, 王一恒, 颜芬 , 等. 一种网络空间现象同位模式挖掘的新方法[J]. 武汉大学学报·信息科学版, 2015,40(5):652-660. |
[ Tian J, Wang Y H, Yan F , et al. A new method for mining co-location patterns between network spatial phenomena[J]. Geomatics and Information Science of Wuhan University, 2015,40(5):652-660. ] | |
[77] | Shekhar S, Huang Y . Discovering spatial co-location patterns: A summary of results[C]// Proceedings of the International Symposium on Spatial and Temporal Databases. Springer, Berlin, Heidelberg, 2001: 236-256. |
[78] | Huang Y, Shekhar S, Xiong H . Discovering colocation patterns from spatial data sets: A general approach[J]. IEEE Transactions on Knowledge & Data Engineering, 2004,16(12):1472-1485. |
[79] | Celik M, Shekhar S, Rogers J P , et al. Mixed-drove spatio-temporal co-occurence pattern mining: A summary of results[C]// Proceedings of the Sixth International Conference on Data Mining (ICDM 2006). IEEE, 2006: 119-128. |
[80] | Celik M, Shekhar S, Rogers J P , et al. Mining at most top-k% mixed-drove spatio-temporal co-occurrence patterns: a summary of results[C]// Proceedings of the 2007 IEEE 23 rd International Conference on Data Engineering Workshop. IEEE , 2007: 565-574. |
[81] | Huang Y, Zhang L, Zhang P . A framework for mining sequential patterns from spatio-temporal event data sets[J]. IEEE Transactions on Knowledge and Data Engineering, 2008,20(4):433-448. |
[82] | Mohan P, Shekhar S, Shine J A , et al. Cascading spatio-temporal pattern discovery[J]. IEEE Transactions on Knowledge and Data Engineering, 2012,24(11):1977-1992. |
[83] | Yu W, Ai T, He Y , et al. Spatial co-location pattern mining of facility points-of-interest improved by network neighborhood and distance decay effects[J]. International Journal of Geographical Information Science, 2016,31(2):280-296. |
[84] | Celik M, Kang J M, Shekhar S . Zonal co-location pattern discovery with dynamic parameters[C]// Proceedings of the Seventh International Conference on Data Mining (ICDM 2007). IEEE, 2007: 433-438. |
[85] | Qian F, Chiew K, He Q , et al. Mining regional co-location patterns with kNNG[J]. Journal of Intelligent Information Systems, 2014,42(3):485-505. |
[86] | Eick C F, Parmar R, Ding W , et al. Finding regional co-location patterns for sets of continuous variables in spatial datasets[C]// Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2008: 30. |
[87] | Mohan P, Shekhar S, Shine J A , et al. A neighborhood graph based approach to regional co-location pattern discovery: a summary of results[C]// Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, 2011: 122-132. |
[88] | Cressie N A, Wikle C . Statistics for spatio-temporal data[J]. Chance, 2011,27(2):64. |
[89] | Pfeifer P E, Deutrch S J . A three-stage iterative procedure for space-time modeling[J]. Technometrics, 1980,22(1):35-47. |
[90] | Brunsdon C, Fotheringham A S, Charlton M E . Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996,28(4):281-298. |
[91] | Huang B, Wu B, Barry M . Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010,24(3):383-401. |
[92] | Deng M, Yang W, Liu Q L , et al. Heterogeneous space-time artificial neural networks for space-time series prediction[J]. Transactions in GIS, 2018,22(1):183-201. |
[93] | Cheng T, Wang J . Accommodating spatial associations in DRNN for space-time analysis[J]. Computers, Environment and Urban Systems, 2009,33(6):409-418. |
[94] | Deng M, Yang W, Liu Q . Geographically weighted extreme learning machine: A method for space-time prediction[J]. Geographical Analysis, 2017,49(4):433-450. |
[95] | Zhang J, Zheng Y, Qi D , et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018,259:147-166. |
[96] | 李小文, 曹春香, 张颢 . 尺度问题研究进展[J]. 遥感学报, 2009,13(s1):12-20. |
[ Li X W, Cao C X, Zhang H . Progress in scale research[J]. Journal of Remote Sensing, 2009,13(s1):12-20. ] | |
[97] | Goodchild M F . Scale in GIS: An overview[J]. Geomorphology, 2011,130(1):5-9. |
[98] | 孙庆先, 李茂堂, 路京选 , 等. 地理空间数据的尺度问题及其研究进展[J]. 地理与地理信息科学, 2007,23(4):53-56. |
[ Sun Q X, Li M T, Lu J X , et al. Scale issue and its research progress of geospatial data[J]. Geography and Geo-Information Science, 2007,23(4):53-56. ] | |
[99] | Comaniciu D, Meer P . Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5):603-619. |
[100] | 李志林, 刘启亮, 唐建波 . 尺度驱动的空间聚类理论[J]. 测绘学报, 2017,46(10):1534-1548. |
[ Li Z L, Liu Q L, Tang J B . Towards a scale-driven theory for spatial clustering[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1534-1548. ] | |
[101] | Liu Q, Li Z, Deng M , et al. Modeling the effect of scale on clustering of spatial points[J]. Computers, Environment and Urban Systems, 2015,52:81-92. |
[102] | 唐建波, 刘启亮, 邓敏 , 等. 空间层次聚类显著性判别的重排检验方法[J]. 测绘学报, 2016,45(2):233-240. |
[ Tang J B, Liu Q L, Deng M , et al. A permutation test for identifying significant clusters in spatial dataset[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(2):233-240. ] | |
[103] | Shi Y, Gong J, Deng M , et al. A graph-based approach for detecting spatial cross-outliers from two types of spatial point events[J]. Computers, Environment and Urban Systems, 2018,72:88-103. |
[104] | Deng M, Yang X, Shi Y , et al. A non-parametric statistical test method to detect significant cross-outliers in spatial points[J]. Transactions in GIS, 2018,22(6):1462-1483. |
[105] | Cai J, Deng M, Liu Q , et al. Nonparametric significance test for discovery of network-constrained spatial co-location patterns[J]. Geographical Analysis, 2019,51(1):3-22. |
[106] | Fortin M J, Dale M R T . Spatial analysis: a guide for ecologists[M]. Cambridge University Press, 2005. |
[107] | Cai J, Deng M, Liu Q , et al. A statistical method for detecting spatiotemporal co-occurrence patterns[J]. International Journal of Geographical Information Science, 2019,33(5):967-990. |
[108] | Neyman J, Scott E L . Statistical approach to problems of cosmology[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1958,20(1):1-29. |
[109] | Deng M, He Z, Liu Q , et al. Multi-scale approach to mining significant spatial co-location patterns[J]. Transactions in GIS, 2017,21(5):1023-1039. |
[110] | Wiegand T, He F, Hubbell S P . A systematic comparison of summary characteristics for quantifying point patterns in ecology[J]. Ecography, 2013,36(1):92-103. |
[111] | Cai J, Liu Q, Deng M , et al. Adaptive detection of statistically significant regional spatial co-location patterns[J]. Computers, Environment and Urban Systems, 2018,68:53-63. |
[112] | Yang W T, Deng M, Xu F , et al. Prediction of hourly PM2.5 using a space-time support vector regression model[J]. Atmospheric Environment, 2018,181:12-19. |
[113] | Wang J F, Zhang T L, Fu B J . A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016,67:250-256. |
[114] | Prasad S K, Aghajarian D, McDermott M , et al. Parallel processing over spatial-temporal datasets from geo, bio, climate and social science communities: a research roadmap[C]// Proceedings of the 2017 IEEE International Congress on Big Data (Bigdata Congress). IEEE, 2017: 232-250. |
[115] | 孙中伟, 路紫 . 流空间基本性质的地理学透视[J]. 地理与地理信息科学, 2005,21(1):109-112. |
[ Sun Z W, Lu Z . A geographical perspective to the elementary nature of space of flows[J]. Geography and Geo-Information Science, 2005,21(1):109-112. ] | |
[116] | 程昌秀, 史培军, 宋长青 , 等. 地理大数据为地理复杂性研究提供新机遇[J]. 地理学报, 2018,73(8):1397-1406. |
[ Cheng C X, Shi P J, Song C Q , et al. Geographic big-data: A new opportunity for geography complexity study[J]. Acta Geographica Sinica, 2018,73(8):1397-1406. ] |
[1] | 王卷乐, 李姝晗, 王玉洁, 段博文, 周佳玲. 自然灾害综合风险普查中的质量检查方法研究[J]. 地球信息科学学报, 2023, 25(9): 1765-1773. |
[2] | 张俊瑶, 杨晓梅, 王志华, 杨海坤, 张博淳, 万庆, 雷梅. 绿色发展理念视角下内蒙古煤矿区格局演变分析[J]. 地球信息科学学报, 2023, 25(8): 1655-1668. |
[3] | 潘佳乐, 信睿. COVID-19疫情前后北美五大湖航运网络多尺度时空变化及影响因素研究[J]. 地球信息科学学报, 2023, 25(7): 1481-1499. |
[4] | 陈宇, 陈思, 李杰, 李怀展, 高延东, 王勇, 杜培军. 融合主成分时空分析与时序InSAR的高精度地表形变信息提取——以徐州地区为例[J]. 地球信息科学学报, 2023, 25(12): 2402-2417. |
[5] | 刘琪, 陈碧宇, 李歆艺. 基于轨迹数据和深度学习的CNG出租车CO2排放微观模型构建及碳减排效益评估方法[J]. 地球信息科学学报, 2023, 25(11): 2191-2203. |
[6] | 成星露, 孙永华, 张王宽, 王一涵, 曹许悦, 王衍昭. 气候干湿冷暖化复合类型的识别与量化方法[J]. 地球信息科学学报, 2023, 25(11): 2204-2217. |
[7] | 华一新, 赵鑫科, 张江水. 地理信息系统研究新范式[J]. 地球信息科学学报, 2023, 25(1): 15-24. |
[8] | 赵文双, 江南, 陈云海, 曹一冰. 基于对象流的地缘环境时空分析模型[J]. 地球信息科学学报, 2022, 24(8): 1432-1444. |
[9] | 谢晓苇, 李代超, 卢嘉奇, 吴升, 许芳年. 基于移动监测数据的不同城市场景下PM2.5浓度精细模拟与时空特征解析[J]. 地球信息科学学报, 2022, 24(8): 1459-1474. |
[10] | 唐璐, 许捍卫, 丁彦文. 融合多源地理大数据的城市街区综合活力评价[J]. 地球信息科学学报, 2022, 24(8): 1575-1588. |
[11] | 杨友宝, 李琪, 韩国圣, 马丽君. 长沙市游憩-居住功能空间格局及其匹配关系研究[J]. 地球信息科学学报, 2022, 24(8): 1589-1603. |
[12] | 胡姗, 葛咏, 刘梦晓. 地球信息科学技术在中国减贫中的应用进展[J]. 地球信息科学学报, 2021, 23(8): 1339-1350. |
[13] | 赵飞, 廖永丰. 突发自然灾害事件网络舆情传播特征及影响因素研究[J]. 地球信息科学学报, 2021, 23(6): 992-1001. |
[14] | 王宇琦, 沈润平, 黄安奇, 周旻悦. 2001—2017年中国不同耕作区重建MODIS LAI时空动态[J]. 地球信息科学学报, 2021, 23(4): 658-669. |
[15] | 金城, 吴文渊, 陈柏儒, 杨续超. 面向不同用户群体的社交媒体台风舆情演化分析及对比研究[J]. 地球信息科学学报, 2021, 23(12): 2174-2186. |
|