地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (4): 720-730.doi: 10.12082/dqxxkx.2020.200002
收稿日期:
2019-12-31
修回日期:
2020-01-21
出版日期:
2020-04-25
发布日期:
2020-06-10
作者简介:
秦承志(1977— ),男,山东蒙阴人,研究员,主要研究方向为数字地形分析、地理建模智能化、流域模拟与情景分析。
基金资助:
Received:
2019-12-31
Revised:
2020-01-21
Online:
2020-04-25
Published:
2020-06-10
Contact:
QIN Chengzhi
Supported by:
摘要:
数字地形分析基于数字高程模型计算各种地形信息,在诸多地理现象和地理过程的定量刻画和模拟中都发挥着不可或缺的重要作用。作为地理信息空间分析的一个基本组成内容、GIS的必备功能之一,数字地形分析的方法研究不断深化、扩展。本文从一个新的视角,即方法研究的维度,对该领域已有工作及发展趋势进行梳理,将数字地形分析方法研究工作归纳为依次显现出的3个研究维度:① 精准,即如何设计新的数字地形分析方法以更准确、精确地计算出符合地理学认知、满足应用领域问题求解所需的地形信息;② 高效,即如何使数字地形分析的计算更高效;③ 易用,即如何使数字地形分析对于应用者(尤其是相关应用领域中非数字地形分析专家的用户)更易用。特别是近年新显现出的“易用”研究维度,通过研究设计数字地形分析领域应用建模知识的形式化表达及相应的推理应用方法,有望实现数字地形分析应用工作流的智能化构建,满足实际应用中对数字地形分析的易用性需求;同时,其研究思路和方法也可为地理信息空间分析中诸多其他分支领域解决所面临的类似问题提供借鉴。
秦承志. 数字地形分析方法研究的维度——精准、高效、易用[J]. 地球信息科学学报, 2020, 22(4): 720-730.DOI:10.12082/dqxxkx.2020.200002
QIN Chengzhi. Dimensions of Methodologic Researches on Digital Terrain Analysis: Accurate, Efficient, and Easy-to-use[J]. Journal of Geo-information Science, 2020, 22(4): 720-730.DOI:10.12082/dqxxkx.2020.200002
[1] | 陈述彭 . 中国地形鸟瞰图集[M]. 北京:中华书局, 1954. |
[ Chen S . Bird's-eye view atlas of terrain in China[M]. Beijing: Zhonghua Book Company, 1954. ] | |
[2] | 陈述彭 . 中国地形鸟瞰图集的编制工作[J]. 地理学报, 1955,21(1):71-86. |
[ Chen S . Compiling of "bird's-eye view atlas of terrain in China"[J]. Acta Geographica Sinica, 1955,21(1):71-86. ] | |
[3] | Krieger G, Moreira A, Fiedler H , et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(11):3317-3341. |
[4] | Robinson N, Regetz J, Guralnick R P . Earth Env-DEM 90: A nearly-global, void-free, multi-scale smoothed, 90 m digital elevation model from fused ASTER and SRTM data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,87:57-67. |
[5] | Yamazaki D, Ikeshima D, Tawatari R , et al. A high-accuracy map of global terrain elevations[J]. Geophysical Research Letters, 2017,44:5844-5853. |
[6] | Yue L, Shen H, Zhang L , et al. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,123:20-34. |
[7] | Wilson J P, Gallant J C , eds. Terrain analysis: Principles and applications[M]. New York: Wiley, 2000. |
[8] | 周启鸣, 刘学军 . 数字地形分析[M]. 北京: 科学出版社, 2006. |
[ Zhou Q M, Liu X J . Digital terrain analysis[M]. Beijing: Science Press, 2006. ] | |
[9] | Hengl T, Reuter H I , et al. Geomorphometry: Concepts, software, applications[M]. Amsterdam: Elsevier, 2009. |
[10] | 陈述彭, 鲁学军, 周成虎 . 地理信息系统导论[M]. 北京: 科学出版社, 1999. |
[ Chen S, Lu X, Zhou C . Introduction to geographical information system[M]. Beijing: Science Press, 1999. ] | |
[11] | 王彦文, 秦承志 . 地貌形态类型的自动分类方法综述[J]. 地理与地理信息科学, 2017,33(4):16-21. |
[ Wang Y, Qin C . Review of methods for landform automatic classification[J]. Geography and Geo-information Science, 2017,33(4):16-21. ] | |
[12] | 汤国安 . 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014,69(9):1305-1325. |
[ Tang G . Progress of DEM and digital terrain analysis in China[J]. Acta Geographica Sinica, 2014,69(9):1305-1325. ] | |
[13] | Lv G, Xiong L, Chen M , et al. Chinese progress in geomorphometry[J]. Journal of Geographical Sciences, 2017,27(11):1389-1412. |
[14] | Maguire D J, Goodchild M F, Rhind D W , et al. Geographic information system: Principles and applications[M]. New York: Longman Scientific & Technical, 1991. |
[15] | Longley P A, Goodchild M F, Maguire D W , et al. Geographical information systems: Principles, techniques, management and applications (two volumes)[M]. New York: Wiley, 1999. |
[16] | Zhou Q, Zhu A X . The recent advancement in digital terrain analysis and modeling[J]. International Journal of Geographical Information Science, 2013,27(7):1269-1271. |
[17] | Wilson J P . Digital terrain modeling[J]. Geomorphology, 2012,137:107-121. |
[18] | Reuter H I, Nelson A, Jarvis A . An evaluation of void-filling interpolation methods for SRTM data[J]. International Journal of Geographical Information Science, 2007,21(9):983-1008. |
[19] | Hutchinson M F . Interpolating mean rainfall using thin plate smoothing splines[J]. International Journal of Geographical Information Systems, 1995,9(4):385-403. |
[20] | Drặgut L, Tiede L, Levick S R . ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010,24(6):859-871. |
[21] | 杨昕, 汤国安, 刘学军 , 等. 数字地形分析的理论、方法与应用[J]. 地理学报, 2009,64(9):1058-1070. |
[ Yang X, Tang G, Liu X , et al. Digital terrain analysis: Theory, method and application[J]. Acta Geographica Sinica, 2009,64(9):1058-1070. ] | |
[22] | Moore I D, Grayson R B, Ladson A R . Digital terrain modeling: A review of hydrological, geomorphological, and biological applications[J]. Hydrological Processes, 1991,5:3-30. |
[23] | 汤国安, 那嘉明, 程维明 . 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 2017,46(10):1570-1591. |
[ Tang G, Na J, Cheng W . Progress of digital terrain analysis on regional geomorphologyin China[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1570-1591. ] | |
[24] | 汤国安 . 面向地貌学本源的数字地形分析[C]. 2019年中国地理学大会,2019年11月1-3日,北京. |
[ Tang G . Digital terrain analysis oriented to the origin of Geomorphology[C]. Conference of the Geographical Society of China, Nov. 1-3, 2019, Beijing. ] | |
[25] | Florinsky I V . Accuracy of local topographic variables derived from digital elevation models[J]. International Journal of Geographical Information Science, 1998,12(1):47-61. |
[26] | Shary P A, Sharaya L S, Mitusov A V . Fundamental quantitative methods of land surface analysis[J]. Geoderma, 2002,107(1):1-32. |
[27] | 秦承志, 朱阿兴, 李宝林 , 等. 基于栅格DEM的多流向算法述评[J]. 地学前缘, 2006,13(3):91-98. |
[ Qin C, Zhu A, Li B , et al. Review of multiple flow direction algorithms based on gridded digital elevationmodel[J]. Earth Science Frontiers, 2006,13(3):91-98. ] | |
[28] | Qin C, Zhu A X, Pei T , et al. An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm[J]. International Journal of Geographical Information Science, 2007,21(4):443-458. |
[29] | Gallant J C, Dowling T I . A multiresolution index of valley bottom flatness for mapping depositional areas[J]. Water Resources Research, 2003,39(12):1347-1360. |
[30] | MacMillan R A, Pettapiece W W, Nolan S C , et al. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic[J]. Fuzzy Sets and Systems, 2000,113(1):81-109. |
[31] | Schmidt J, Hewitt A . Fuzzy land element classification from DTMs based on geometry and terrain position[J]. Geoderma, 2004,121:243-256. |
[32] | 秦承志, 朱阿兴, 施迅 , 等. 坡位渐变信息的模糊推理[J]. 地理研究, 2007,26(6):1165-1174,1307. |
[ Qin C, Zhu A, Shi X , et al. Fuzzy inference of spatial gradation of slope positions[J]. Geographical Research, 2007,26(6):1165-1174,1307. ] | |
[33] |
Qin C Z, Zhu A, Shi X , et al. Quantification of spatial gradation of slope positions[J]. Geomorphology, 2009,110:152-161.
doi: 10.1016/j.geomorph.2009.04.003 |
[34] | Jasiewicz J, Stepinski T F . Geomorphons: A pattern recognition approach to classification and mapping of landforms[J]. Geomorphology, 2013,182:147-156. |
[35] | 康鑫, 王彦文, 秦承志 , 等. 多分析尺度下综合判别的地形元素分类方法[J]. 地理研究, 2016,35(9):1637-1646. |
[ Kang X, Wang Y, Qin C , et al. A new method of landform element classification based on multi-scale morphology[J]. Geographical Research, 2016,35(9):1637-1646. ] | |
[36] | Zhu A X, Wang R, Qiao J , et al. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic[J]. Geomorphology, 2014,214:128-138. |
[37] | Na J, Yang X, Dai W , et al. Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area[J]. Physical Geography, 2018,39(4):368-386. |
[38] | Xiong L, Tang G, Yan S , et al. Landform-oriented flow-routing algorithm for the dual-structure loess terrain based on digital elevation models[J]. Hydrological Processes, 2014,28(4):1756-1766. |
[39] | Smith M P, Zhu A X, Burt J E , et al. The effects of DEM resolution and neighborhood size on digital soil survey[J]. Geoderma, 2006,137(1):58-69. |
[40] |
Quinn P, Beven K J, Lamb R . The ln(a/tanb) index: How to calculate it and how to use it within the TOPMODEL framework[J]. Hydrological Processes, 1995,9:161-182.
doi: 10.1002/(ISSN)1099-1085 |
[41] | 张宏鸣, 杨勤科, 李锐 , 等. 流域分布式侵蚀学坡长的估算方法研究[J]. 水利学报, 2012,43(4):437-443. |
[ Zhang H, Yang Q, Li R , et al. Research on the estimation of slope length in distributed watershed erosion[J]. Journal of Hydraulic Engineering, 2012,43(4):437-443. ] | |
[42] | Zhou Q M, Liu X J . Error assessment of grid-based flow routing algorithms used in hydrological models[J]. International Journal of Geographical Information Science, 2002,16(8):819-842. |
[43] | Zhou Q, Liu X . Analysis of errors of derived slope and aspect related to DEM data properties[J]. Computers and Geosciences, 2004,30:369-378 |
[44] | Qin C Z, Bao L L, Zhu A X , et al. Artificial surfaces simulating complex terrain types for evaluating grid-based flow direction algorithms[J]. International Journal of Geographical Information Science, 2013,27(6):1055-1072. |
[45] | Gallant J C, Hutchinson M F . A differential equation for specific catchment area[J]. Water Resources Research, 2011,47(5):W05535. |
[46] | 汤国安, 刘学军, 房亮 , 等. DEM及数字地形分析中尺度问题研究综述[J]. 武汉大学学报·科学信息版, 2006,31(12):1059-1066. |
[ Tang G, Liu X, Fang L , et al. A review on the scale issue in DEMs and digital terrain analysis[J]. Geomatics and Information Science of Wuhan University, 2006,31(12):1059-1066. ] | |
[47] | 秦承志, 呼雪梅 . 栅格数字地形分析中的尺度问题研究方法[J]. 地理研究, 2014,33(2):270-283. |
[ Qin C, Hu X . Review on scale-related researches in grid-based digital terrain analysis[J]. Geographical Research, 2014,33(2):270-283. ] | |
[48] | Lindsay J B . Sensitivity of channel mapping techniques to uncertainty in digital elevation data[J]. International Journal of Geographical Information Science, 2006,20(6):669-692. |
[49] |
Qin C Z, Bao L L, Zhu A X , et al. Uncertainty due to DEM error in landslide susceptibility mapping[J]. International Journal of Geographical Information Science, 2013,27(7):1364-1380.
doi: 10.1080/13658816.2013.770515 |
[50] | 张磊, 汤国安, 李发源 , 等. 黄土高原沟沿线研究综述[J]. 地理与地理信息科学, 2012,28(6):44-48. |
[ Zhang L, Tang G A, Li F Y , et al. A review on research of Loess shoulder-line[J]. Geography and Geo-information Science, 2012,28(6):44-48.] | |
[51] | Qin C Z, Zhu A X, Qiu W L , et al. Mapping soil organic matter in small low-relief catchments using fuzzy slope position information[J]. Geoderma, 2012, 171-172:64-74. |
[52] | Wang L, Liu H . An efficient method for identifyingand filling surface depressions in digital elevation modelsfor hydrologic analysis and modelling[J]. International Journal of Geographical Information Science, 2006,20:193-213. |
[53] | Liu Y, Zhang W, Xu J . Another fast and simpleDEM depression-filling algorithm based on priority queuestructure[J]. Atmospheric and Oceanic Science Letters, 2009,2:214-219. |
[54] | Zhou G, Sun Z, Fu S . An efficient variant of thePriority-Flood algorithm for filling depressions in rasterdigital elevation models[J]. Computers & Geosciences, 2016,90:87-96. |
[55] | Xiong L Y, Jiang R Q, Lu Q H , et al. Improved priority-flood method for depression filling by redundant calculation optimization in local micro-relief areas[J]. Transactions in GIS, 2019,23(2):259-274. |
[56] | Wang Y J, Qin C Z, Zhu A X . Review on algorithms of dealing with depressions in grid DEMs[J]. Annals of GIS, 2019,25(2):83-97. |
[57] | Qin C Z, Zhan L J, Zhu A X , et al. A strategy for raster-based geocomputation under different parallel computing platforms[J]. International Journal of Geographical Information Science, 2014,28(11):2127-2144. |
[58] | 宋效东, 刘学军, 汤国安 , 等. 并行数字地形分析的容错算法研究[J]. 地理与地理信息科学, 2013,29(2):1-5. |
[ Song X D, Liu X J, Tang G A , et al. Research on the fault-tolerant algorithm of parallel digital terrain analysis[J]. Geography and Geo-information Science, 2013,29(2):1-5. ] | |
[59] | Qin C Z, Zhan L . Parallelizing flow-accumulation calculations on Graphics Processing Units: from iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm[J]. Computers & Geosciences, 2012,43:7-16. |
[60] | Jiang L, Tang G, Liu X , et al. Parallel contributing area calculation with granularity control on massive grid terrain datasets[J]. Computers & Geosciences, 2013,60:70-80. |
[61] | Qin C Z, Ai B B, Zhu A X, Liu J Z . An efficient method for applying a differential equation to deriving the spatial distribution of specific catchment area from gridded digital elevation models[J]. Computers & Geosciences, 2017,100:94-102. |
[62] |
Guan Q F, Clarke K C . A general-purpose parallel raster processing programming library test application using a geographic cellular automata model[J]. International Journal of Geographical Information Science, 2010,24:695-722.
doi: 10.1080/13658810902984228 |
[63] | Guan Q F, Zeng W, Gong J F , et al. pRPL 2.0: Improving the parallel raster processing library[J]. Transactions in GIS, 2014,18:25-52. |
[64] | Shook E, Hodgson M E, Wang S , et al. Parallel cartographic modeling: A methodology for parallelizing spatial data processing[J]. International Journal of Geographical Information Science, 2016,30(12):2355-2376. |
[65] | 艾贝贝, 秦承志, 朱阿兴 . 栅格地理计算并行算子对区域计算算法并行化的可用性分析——以多流向算法为例[J]. 地球信息科学学报, 2015,17(5):562-567. |
[ Ai B B, Qin C Z, Zhu A X . Parallelization of regional operation algorithm using parallel raster-based geocomputation operators[J]. Journal of Geo-information Science, 2015,17(5):562-567. ] | |
[66] | Qin C Z, Zhu A X, Pei T , et al. An approach to computing topographic wetness index based on maximum downslope gradient[J]. Precision Agriculture, 2011,12(1):32-43. |
[67] | Tarboton D G . Terrain analysis using Digital Elevation Models in hydrology[C]. 23 rd ESRI International Users Conference, San Diego, California, July 7-11, 2003. |
[68] | Lindsay J B . Whitebox GAT: A case study in geomorphometric analysis[J]. Computers & Geosciences, 2016,95:75-84. |
[69] | 秦承志, 卢岩君, 包黎莉 , 等. 简化数字地形分析软件(SimDTA)及其应用——以嫩江流域鹤山农场的坡位模糊分类应用为例[J]. 地球信息科学学报, 2009,11(6):737-743. |
[ Qin C Z, Lu Y J, Bao L L , et al. Simple Digital Terrain Analysis software (SimDTA 1.0) and its application in fuzzy classification of slope positions[J]. Journal of Geo-information Science, 2009,11(6):737-743. ] | |
[70] |
Zhu L J, Zhu A X, Qin C Z , et al. Automatic approach to deriving fuzzy slope positions[J]. Geomorphology, 2018,304:173-183.
doi: 10.1016/j.geomorph.2017.12.024 |
[71] | Wang S, Anselin L, Bhaduri B , et al. CyberGIS software: A synthetic review and integration roadmap[J]. International Journal of Geographical Information Science, 2013,27(11):2122-2145. |
[72] |
Yang C, Raskin R, Goodchild M, Gahegan M , Geospatial Cyberinfrastructure: Past, present and future[J]. Computers, Environment and Urban Systems, 2010,34(4):264-277.
doi: 10.1016/j.compenvurbsys.2010.04.001 |
[73] | Yang C, Huang Q, Li Z , et al. Big data and cloud computing: Innovation opportunities and challenges[J]. International Journal of Digital Earth, 2017,10(1):13-53. |
[74] | Desconnets J C, Giuliani G, Guigoz Y , et al. GEOCAB Portal: A gateway for discovering and accessing capacity building resources in Earth Observation[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,54:95-104. |
[75] | U.S. Geological Survey. The national map: New data delivery homepage, advanced viewer, lidar visualizationv[EB/OL]. US. Geological Survey Fact Sheet 2019-3032. 2019. https://doi.org/10.3133/fs20193032 |
[76] | Yue P, Di L, Yang W , et al. Semantics-based automatic composition of geospatial Web service chains[J]. Computers & Geosciences, 2007,33:649-665. |
[77] | Zhao P, Foerster T, Yue P . The geoprocessing web[J]. Computers & Geosciences, 2012,47:3-12. |
[78] | Zhu Y, Yang J . Automatic data matching for geospatial models: A new paradigm for geospatial data and models sharing[J]. Annals of GIS, 2019,25(4):283-298. |
[79] |
Maguire D J, Longley P A . The emergence of geoportals and their role in spatialdata infrastructures[J]. Computers, Environment and Urban Systems, 2005,29:3-14.
doi: 10.1016/S0198-9715(04)00045-6 |
[80] | Usery E L, Varanka D E, Davis L R . Topographic mapping evolution: from field and photographically collected data to GIS production and linked open data[J]. The Cartographic Journal, 2018,55(4):378-390. |
[81] | Lin H, Chen M, Lu G . Virtual Geographic Environment: A workspace for computer-aided geographic experiments[J]. Annals of the Association of American Geographers, 2013,103(3):465-482. |
[82] | Chen M, Yue S, Lü G , et al. Teamwork-oriented integrated modeling method for geo-problem solving[J]. Environmental Modelling & Software, 2019,119:111-123. |
[83] |
Hou Z W, Qin C Z, Zhu A X , et al. From manual to intelligent: A review of input data preparation methods for geographic modeling[J]. ISPRS International Journal of Geo-Information, 2019,8(9):376.
doi: 10.3390/ijgi8090376 |
[84] |
吴雪薇, 秦承志, 朱阿兴 . 数字地形分析应用适配性知识的案例表达与推理应用方法[J]. 地理科学进展, 2016,35(1):89-97.
doi: 10.18306/dlkxjz.2016.01.010 |
[ Wu X W, Qin C Z, Zhu A X . Case-based formalization and inference method of application-matching knowledge on digital terrain analysis[J]. Progress in Geography, 2016,35(1):89-97. ]
doi: 10.18306/dlkxjz.2016.01.010 |
|
[85] |
Qin C Z, Wu X W, Jiang J C , et al. Case-based knowledge formalization and reasoning method for digital terrain analysis: Application to extracting drainage networks[J]. Hydrology and Earth System Sciences, 2016,20:3379-3392.
doi: 10.5194/hess-20-3379-2016 |
[86] | Wilson J P . Environmental applications of digital terrain modeling[M]. Hoboken, N J: Wiley Blackwell, 2018. |
[1] | 谢静, 陈楠, 林偲蔚. 基于地形音乐的地形定量分析与空间分异研究—以陕北黄土高原为例[J]. 地球信息科学学报, 2023, 25(5): 924-934. |
[2] | 丁小花, 王琤, 席俊杰, 王朝, 岳程瑜, 张青峰. 黄土高原地貌类型界线划定研究进展[J]. 地球信息科学学报, 2022, 24(7): 1219-1233. |
[3] | 林偲蔚, 陈楠, 刘奇祺, 贺卓文. 基于DEM小流域复杂网络的黄土高原地貌自动识别研究[J]. 地球信息科学学报, 2022, 24(4): 657-672. |
[4] | 陶宇, 王春, 徐燕, 张光祖, 宋素素, 杨维. DEM建模视角下的城市道路分类与表达[J]. 地球信息科学学报, 2020, 22(8): 1589-1596. |
[5] | 熊礼阳, 汤国安. 黄土高原沟谷地貌发育演化研究进展与展望[J]. 地球信息科学学报, 2020, 22(4): 816-826. |
[6] | 蔡顺, 耿豪鹏, 郑炜珊, 潘保田. 基于傅里叶变换的谷间距特征信息提取及其影响因素研究[J]. 地球信息科学学报, 2020, 22(3): 399-409. |
[7] | 雷雪, 周毅, 李阳, 王泽涛. 基于DEM的黄土地貌逼近度因子构建及特征分析[J]. 地球信息科学学报, 2020, 22(3): 431-441. |
[8] | 王浩, 王含宇, 杨名宇, 许永森. Retinex图像增强在GPU平台上的实现[J]. 地球信息科学学报, 2019, 21(4): 623-629. |
[9] | 潘淼鑫, 林甲祥, 陈崇成, 叶晓燕. 基于C-SOM和Spark的并行空间离群挖掘方法及应用[J]. 地球信息科学学报, 2019, 21(1): 128-136. |
[10] | 孙经纬, 孙广中, 詹石岩, 毛睿, 周英华. SA*:一种多线程路径规划算法[J]. 地球信息科学学报, 2018, 20(6): 753-761. |
[11] | 江岭, 凌德泉, 赵明伟, 王春, 曾微波. 顾及多分析尺度的地形部位面向对象分类方法[J]. 地球信息科学学报, 2018, 20(3): 281-290. |
[12] | 邱强, 秦承志, 朱效民, 赵晓芳, 方金云. 全空间下并行矢量空间分析研究综述与展望[J]. 地球信息科学学报, 2017, 19(9): 1217-1227. |
[13] | 周恩波, 毛善君, 李梅, 孙振明. GPU加速的改进PAM聚类算法研究与应用[J]. 地球信息科学学报, 2017, 19(6): 782-791. |
[14] | 刘洋, 关庆锋. 景观指数的并行计算方法[J]. 地球信息科学学报, 2017, 19(4): 457-466. |
[15] | 江岭, 王春, 赵明伟, 杨灿灿. 面向数据传输的地理栅格数据快速压缩方法[J]. 地球信息科学学报, 2016, 18(7): 894-901. |
|