地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (3): 536-549.doi: 10.12082/dqxxkx.2021.200144
朱婉雪1,2(), 孙志刚1,2,3,4,*(
), 李彬彬1, 杨婷3, 刘振3, 彭金榜1,2, 朱康莹1,2, 李仕冀1,2, 娄金勇1,3,4, 侯瑞星1, 李静1, 于武江4, 王永利5, 张峰5, 刘向冶5, 胡华浪6, 欧阳竹2,3,4
收稿日期:
2020-03-26
修回日期:
2020-06-11
出版日期:
2021-03-25
发布日期:
2021-05-25
通讯作者:
*孙志刚(1976- ),男,江苏盐城人,博士,研究员,研究方向为生态遥感与区域生态。E-mail: sun.zhigang@igsnrr.ac.cn作者简介:
朱婉雪(1994- ),女,四川乐山人,博士生,研究方向为无人机农业遥感应用。E-mail: zhuwx. 16b@igsnrr.ac.cn
基金资助:
ZHU Wanxue1,2(), SUN Zhigang1,2,3,4,*(
), LI Binbin1, YANG Ting3, LIU Zhen3, PENG Jinbang1,2, ZHU Kangying1,2, LI Shiji1,2, LOU Jinyong1,3,4, HOU Ruixing1, LI Jing1, YU Wujiang4, WANG Yongli5, ZHANG Feng5, LIU Xiangye5, HU Hualang6, OUYANG Zhu2,3,4
Received:
2020-03-26
Revised:
2020-06-11
Online:
2021-03-25
Published:
2021-05-25
Contact:
SUN Zhigang
Supported by:
摘要:
在已集中连片改造为农田的盐碱地上,开展无人机遥感作物土壤空间异质性分析与光谱指数响应胁迫诊断对于提升盐碱地利用效率、创造更多经济效益与生态价值具有重要意义。本研究以山东省东营市黄河三角洲典型滨海盐碱地集中连片旱作农田的主要作物——高粱和玉米为研究对象,利用固定翼无人机获取400 hm2滨海盐碱地多光谱遥感数据,并结合地面195个采样点的3个土层(0~10 cm、10~20 cm、20~40 cm)的土壤属性数据,对该研究区域内作物生长的土壤环境因子进行空间异质性分析与光谱指数响应胁迫诊断。基于土壤属性数据,利用反距离加权插值法,绘制该研究区域内土壤盐分、pH、有机质、全氮和速效氮共5个指标含量的水平与垂直空间分布图。插值结果显示,5种土壤属性指标存在显著水平和垂直空间异质性。基于随机森林模型,采用递归特征消除法,结合土壤指标对光谱指数的重要性值,探讨影响作物生长的主要土壤环境胁迫因子。结果表明,5种土壤属性因子均会对玉米和高粱生长造成影响,但主要胁迫因子分别为土壤速效氮含量(10~20 cm)和3个土层的盐分含量。本研究为大面积农情胁迫监测提供了一项有效的地面与航空协同监测方案,为盐碱地旱作农田管理与决策提供了理论依据和技术支持。
朱婉雪, 孙志刚, 李彬彬, 杨婷, 刘振, 彭金榜, 朱康莹, 李仕冀, 娄金勇, 侯瑞星, 李静, 于武江, 王永利, 张峰, 刘向冶, 胡华浪, 欧阳竹. 基于无人机遥感的滨海盐碱地土壤空间异质性分析与作物光谱指数响应胁迫诊断[J]. 地球信息科学学报, 2021, 23(3): 536-549.DOI:10.12082/dqxxkx.2021.200144
ZHU Wanxue, SUN Zhigang, LI Binbin, YANG Ting, LIU Zhen, PENG Jinbang, ZHU Kangying, LI Shiji, LOU Jinyong, HOU Ruixing, LI Jing, YU Wujiang, WANG Yongli, ZHANG Feng, LIU Xiangye, HU Hualang, OUYANG Zhu. Analysis of Spatial Heterogeneity for Soil Attributes and Spectral Indices-based Diagnosis of Coastal Saline-Alkaline Farmland Stress Using UAV Remote Sensing[J]. Journal of Geo-information Science, 2021, 23(3): 536-549.DOI:10.12082/dqxxkx.2021.200144
[1] | 马玉蕾, 王德, 刘俊民, 等. 黄河三角洲典型植被与地下水埋深和土壤盐分的关系[J]. 应用生态学报, 2013,24(9):2423-2430. |
[ Ma Y L, Wang D, Liu J M, et al. Relationships between typical vegetations, soil salinity, and groundwater depth in the Yellow River Delta of China[J]. Chinese Journal of Applied Ecology, 2013,24(9):2423-2430. ] | |
[2] | Alaa A M, Katsuaki K, Mohamed G A, et al. Mapping soil salinity using spectral mixture analysis of landsat 8 OLI images to identify factors influencing salinization in an arid region[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,83:101944. |
[3] | Casas A, Riaño D, Ustin S L, et al. Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response[J]. Remote Sensing of Environment, 2014,148:28-41. |
[4] | Darvishzadeh R, Wang T, Skidmore A, et al. Analysis of Sentinel-2 and Rapid Eye for retrieval of leaf area index in a Saltmarsh using a radiative transfer Model[J]. Remote Sensing, 2019,11(6):671. |
[5] | Battude M, Bitar A A, Morin D, et al. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[J]. Remote Sensing of Environment, 2016,184:668-681. |
[6] | Zhang C, Kovacs J M. The application of small unmanned aerial systems for precision agriculture: A review[J]. Precision Agriculture, 2012,13(6):693-712. |
[7] | Hu J, Peng J, Zhou Y, et al. Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images[J]. Remote Sensing, 2019,11:736. |
[8] | Qiu J, Crow W T, Wagner W, et al. Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,80:47-57. |
[9] | Dong J, Crow W T, Tobin K J, et al. Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation[J]. Remote Sensing of Environment, 2020,242:111756. |
[10] |
Potgieter A B, Barbara G J, Chapman S C, et al. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines[J]. Frontiers in Plant Science, 2017,8:1532.
doi: 10.3389/fpls.2017.01532 pmid: 28951735 |
[11] | Hassan M, Yang M, Rasheed A, et al. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat[J]. Remote Sensing, 2018,10:809. |
[12] | Wang Y, Zhang K, Tang C, et al. Estimation of rice growth parameters based on linear mixed-effect model using multispectral images from fixed-wing unmanned aerial vehicles[J]. Remote Sensing, 2019,11(11):1371. |
[13] | Jay S, Maupas F, Bendoula R, et al. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping[J]. Field Crops Research, 2017,210:33-46. |
[14] | Xu Y, Wang X, Bai J, et al. Estimating the spatial distribution of soil total nitrogen and available potassium in coastal wetland soils in the Yellow River Delta by incorporating multi-source data[J]. Ecological Indicators, 2020,111:106002. |
[15] | Khadim F K, Su H, Xu L, et al. Soil salinity mapping in Everglades National Park using remote sensing techniques and vegetation salt tolerance[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2019,110:31-50. |
[16] | Chen M, Willgoose G R, Saco P M. Investigating the impact of leaf area index temporal variability on soil moisture predictions using remote sensing vegetation data[J]. Journal of Hydrology, 2015,522:274-284. |
[17] | Zhang X, Huang B, Liu F. Information extraction and the dynamics of soil salinization with a remote sensing method in a typical county on the Huang-Huai-Hai-Plain of China[J]. Pedosphere, 2020: 30(4):496-507. |
[18] | José AM D, Sayo V M, Rizzo R, et al. Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing[J]. Geoderma, 2017,302:39-51. |
[19] | Lei F, Crow W T, Kustas W P, et al. Data assimilation of high-resolution thermal and radar remote sensing retrievals for soil moisture monitoring in a drip-irrigated vineyard[J]. Remote Sensing of Environment, 2020,239:111622. |
[20] | Liu Y, Zhang F, Wang C, et al. Estimating the soil salinity over partially vegetated surfaces from multispectral remote sensing image using non-negative matrix factorization[J]. Geoderma, 2019,354:113887. |
[21] | 鲍士旦等. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. |
[ Bao S D, et al. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000. ] | |
[22] | Wang L, Zhou X, Zhu X, et al. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data[J]. The Crop Journal, 2016,4:212-219. |
[23] | Dong T, Liu J, Shang J, et al. Assessment of red-edge vegetation indices for crop leaf area index estimation[J]. Remote Sensing of Environment, 2019,222:133-143. |
[24] | Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004,90(3):337-352. |
[25] | Haboudane D, Miller J R, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002,81(2):416-426. |
[26] | Raymond H E, Daughtry C S T, Eitel J U H, et al. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index[J]. Agronomy Journal, 2011,103(4):1090. |
[27] | 郭勃. 基于RS和GIS的黄河三角洲盐碱地分级与治理研究[D]. 济南:山东师范大学, 2015. |
[ Guo B. The research on saline-alkali soil grading and governance of the Yellow River Delta based on the RS and GIS[D]. Jinan: Shandong Normal University, 2015. ] | |
[28] | Guo L, Sun Z, Ouyang Z, et al. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River[J]. Catena, 2017,152:135-143. |
[29] | 余笑眉, 吕晓男, 王美琴, 等. 南方丘陵耕地土壤有机质空间插值精度比较——以衢江区为例[J]. 浙江农业学报, 2010,22(5):639-643. |
[ Yu X M, Lv X N, Wang M Q, et al. Comparison of spatial interpolation for soil organic matter of hilly area in southern China: Taking Qujiang District as an example[J]. Acta Agriculturae Zhejiangensis, 2010,22(5):639-643. ] | |
[30] | 周四维. 土壤属性三维建模方法及不确定性分析[D]. 武汉:华中农业大学, 2018. |
[ Zhou S W. The 3D modeling methods and uncertainties analysis of soil properties[D]. Wuhan: Huazhong Agricultural University, 2018. ] | |
[31] | Kahae Y, Tashpolat N. Estimating salt concentrations based on optimized spectral indices in soils with regional heterogeneity[J]. Journal of Spectroscopy, 2019,2019(2):1-15. |
[32] | Di L, Rundquist D C, Han L. Modelling relationships between NDVI and precipitation during vegetative growth cycles[J]. International Journal of Remote Sensing, 1994,15(10):2121-2136. |
[33] | 赵英时等. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003. |
[ Zhao Y S, et al. Principles and methods of remote sensing application analysis[M]. Beijing: Science Press, 2003. ] | |
[34] | Burkart A, Aasen H, Alonso L, et al. Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer[J]. Remote Sensing, 2015,7:725-746. |
[35] | Aasen H, Burkart A, Bolten A, et al. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,108:245-259. |
[1] | 曹煜, 方秀琴, 杨露露, 蒋心远, 廖美玉, 任立良. 基于随机森林的西辽河流域CCI土壤湿度降尺度研究[J]. 地球信息科学学报, 2023, 25(8): 1669-1681. |
[2] | 张寒博, 李彤, 李晓芳, 邓滢, 邓应彬, 荆文龙, 胡义强, 李勇, 杨骥. 无人机遥感和GWR结合的水华短时预测方法[J]. 地球信息科学学报, 2023, 25(8): 1682-1698. |
[3] | 陈科, 管海燕, 雷相达, 曹爽. 基于特征增强核点卷积网络的多光谱LiDAR点云分类方法[J]. 地球信息科学学报, 2023, 25(5): 1075-1087. |
[4] | 吴子豪, 刘耀林, 冯向阳, 陈奕云, 闫庆武. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573-587. |
[5] | 谢小曼, 洪梓翔, 李俐, 仇冰琦, 苏怡然. 基于去除土壤散射干扰SAR数据的玉米残茬生物量反演[J]. 地球信息科学学报, 2023, 25(10): 2070-2083. |
[6] | 聂祥琴, 陈瀚阅, 牛铮, 张黎明, 刘炜, 邢世和, 范协裕, 李家国. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. |
[7] | 杨泽龙, 李艳忠, 白鹏, 杜深文, 郝奕, 钱畅, 李超凡. 1980—2020年中国九大流域蒸散发及其组分时空评估[J]. 地球信息科学学报, 2022, 24(5): 889-901. |
[8] | 蒯宇, 王彪, 吴艳兰, 陈搏涛, 陈兴迪, 薛维宝. 基于多尺度特征感知网络的城市植被无人机遥感分类[J]. 地球信息科学学报, 2022, 24(5): 962-980. |
[9] | 代文, 陈凯, 王春, 李敏, 陶宇. 顾及DEM误差空间自相关的地形变化检测方法[J]. 地球信息科学学报, 2022, 24(12): 2297-2308. |
[10] | 徐富宝, 范建容, 张茜彧, 杨超, 刘佳丽. 融入土壤湿度指标的青藏高原近地表土壤冻融机器学习监测算法[J]. 地球信息科学学报, 2022, 24(12): 2404-2419. |
[11] | 张雄一, 邵全琴, 宁佳, 杨雪清, 巩国丽, 刘国波. 三北工程区植被恢复对土壤风蚀的影响及植被恢复潜力研究[J]. 地球信息科学学报, 2022, 24(11): 2153-2170. |
[12] | 邱炳文, 闫超, 黄稳清. 基于时序遥感数据的农作物种植制度研究进展与展望[J]. 地球信息科学学报, 2022, 24(1): 176-188. |
[13] | 杨练兵, 陈春波, 郑宏伟, 罗格平, 尚白军, Olaf Hellwich. 基于优化随机森林回归模型的土壤盐渍化反演[J]. 地球信息科学学报, 2021, 23(9): 1662-1674. |
[14] | 刘树超, 邵全琴, 杨帆, 郭兴健, 王东亮, 黄海波, 汪阳春, 刘纪远, 樊江文, 李愈哲. 黄河源区放牧家畜数量及空间分布无人机遥感调查[J]. 地球信息科学学报, 2021, 23(7): 1286-1295. |
[15] | 方秀琴, 郭晓萌, 袁玲, 杨露露, 任立良, 朱求安. 随机森林算法在全球干旱评估中的应用[J]. 地球信息科学学报, 2021, 23(6): 1040-1049. |
|