地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (12): 2174-2186.doi: 10.12082/dqxxkx.2021.210065
收稿日期:
2021-02-04
修回日期:
2021-07-13
出版日期:
2021-12-25
发布日期:
2022-02-25
通讯作者:
*杨续超(1980— ),男,河南信阳人,副教授,主要从事全球变化与灾害风险管理等研究工作。 E-mail: yangxuchao@zju.edu.cn作者简介:
金 城(1995— ),男,浙江湖州人,硕士生,研究方向为海岸带灾害风险管理。E-mail: jincheng95@zju.edu.cn
基金资助:
JIN Cheng1(), WU Wenyuan2, CHEN Bairu1, YANG Xuchao1,*(
)
Received:
2021-02-04
Revised:
2021-07-13
Online:
2021-12-25
Published:
2022-02-25
Contact:
YANG Xuchao
Supported by:
摘要:
社交媒体数据可以为台风灾害追踪、灾时救援和灾情评估提供及时有效的信息。现有研究常采用主题建模和情感分析等技术对台风期间社交媒体平台(如新浪微博等)舆论话题和情感变化进行研究。在省域范围内以小时为时间粒度的多维度有效性论证尚有欠缺,且在舆情分析时未能区分用户群体差异。本文以台风“利奇马”为例,在浙江省域范围内,以新浪微博数据为研究对象,首先从词频分析、台风关注度时空变化以及特定灾害事件响应3个角度探讨了微博数据对台风灾情响应的有效性;其次采用隐含狄利克雷分布(Latent Dirichlet Allocation,LDA)主题模型技术挖掘微博文本主题信息,并根据Louvain算法对主题社团进行划分;然后开发了一种基于自定义情感词典的情感分析方法用于情感指数计算,与SnowNLP相比情感倾向性预测精度得到了提高;最后分析了台风期间官方和民众在新浪微博平台上的话题关注以及情感演变差异。结果表明:① 在省级范围内,微博数据能有效反映台风动态和灾害时空分布;② 台风事件微博文本的主题变化反映了灾情不同阶段舆论关注点的动态变化;③ 官方微博文本比民众微博文本具有更明确的主题社团结构;④ 台风事件相关微博文本中的消极情绪在台风登陆后显著增加,其中民众微博文本对台风灾害的情绪响应更及时,官方微博文本中的情感表达始终相对积极。
金城, 吴文渊, 陈柏儒, 杨续超. 面向不同用户群体的社交媒体台风舆情演化分析及对比研究[J]. 地球信息科学学报, 2021, 23(12): 2174-2186.DOI:10.12082/dqxxkx.2021.210065
JIN Cheng, WU Wenyuan, CHEN Bairu, YANG Xuchao. Analysis and Comparative Study of the Evolution of Public Opinion on Social Media during Typhoon for Different User Groups[J]. Journal of Geo-information Science, 2021, 23(12): 2174-2186.DOI:10.12082/dqxxkx.2021.210065
表1
台风事件微博获取情况
台风编号 | 台风名称 | 搜集时段 | 有效微博数量/条 |
---|---|---|---|
1904 | 木恩(Mun) | 2019-07-02 00:00—2019-07-05 00:00 | 303 |
1907 | 韦帕(Wipha) | 2019-07-31 00:00—2019-08-03 00:00 | 369 |
1909 | 利奇马(Lekima) | 2019-08-09 00:00—2019-08-12 00:00 | 72 514 |
1911 | 白鹿(Bailu) | 2019-08-24 00:00—2019-08-27 00:00 | 1404 |
1914 | 剑鱼(Kajiki) | 2019-09-01 00:00—2019-09-04 00:00 | 396 |
1919 | 海贝思(Hagibis) | 2019-10-11 00:00—2019-10-14 00:00 | 784 |
[1] | 李钢, 邱新法, 张眉, 等. 浙江省台风灾害直接经济损失评估模型[J]. 热带地理, 2014, 34(2):178-183. |
[ Li G, Qiu X F, Zhang M, et al. Direct economic losses assessment of typhoon disaster in Zhejiang Province[J]. Tropical Geography, 2014, 34(2):178-183. ] | |
[2] | 郭云霞, 侯一筠, 齐鹏. 中国东南沿海区域台风数值模拟与危险性分析[J]. 海洋科学, 2020, 44(4):1-12. |
[ Guo Y X, Hou Y J, Qi P. Typhoon wind numerical simulation and risk analysis for southeast coastal region of China[J]. Marine Sciences, 2020, 44(4):1-12. ] | |
[3] |
Li Z L, Wang C Z, Emrich C T, et al. A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods[J]. Cartography and Geographic Information Science, 2018, 45(2):97-110.
doi: 10.1080/15230406.2016.1271356 |
[4] | Hao H, Wang Y. Leveraging multimodal social media data for rapid disaster damage assessment[J]. International Journal of Disaster Risk Reduction, 2020, 51:1-13. |
[5] |
Erdelj M, Król M, Natalizio E. Wireless sensor networks and multi-UAV systems for natural disaster management[J]. Computer Networks, 2017, 124:72-86.
doi: 10.1016/j.comnet.2017.05.021 |
[6] |
Guan X Y, Chen C. Using social media data to understand and assess disasters[J]. Natural Hazards, 2014, 74(2):837-850.
doi: 10.1007/s11069-014-1217-1 |
[7] |
Kryvasheyeu Y, Chen H, Obradovich N, et al. Rapid assessment of disaster damage using social media activity[J]. Science Advances, 2016, 2(3):e1500779.
doi: 10.1126/sciadv.1500779 |
[8] |
Chae J, Thom D, Jang Y, et al. Public behavior response analysis in disaster events utilizing visual analytics of microblog data[J]. Computers & Graphics, 2014, 38:51-60.
doi: 10.1016/j.cag.2013.10.008 |
[9] | Huang Q, Cervone G, Jing D, et al. DisasterMapper: A CyberGIS framework for disaster management using social media data[C]// Proceedings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data. ACM, 2015:1-6. |
[10] |
Huang Q, Cervone G, Zhang G. A cloud-enabled automatic disaster analysis system of multi-sourced data streams: An example synthesizing social media, remote sensing and Wikipedia data[J]. Computers, Environment and Urban Systems, 2017, 66(1):23-37.
doi: 10.1016/j.compenvurbsys.2017.06.004 |
[11] |
Neppalli V K, Caragea C, Squicciarini A, et al. Sentiment analysis during Hurricane Sandy in emergency response[J]. International Journal of Disaster Risk Reduction, 2017, 21:213-222.
doi: 10.1016/j.ijdrr.2016.12.011 |
[12] | Chen S, Mao J, Li G, et al. Uncovering sentiment and retweet patterns of disaster-related tweets from a spatiotemporal perspective: A case study of Hurricane Harvey[J]. Telematics and Informatics, 2020, 47:1-18. |
[13] | Alam F, Ofli F, Imran M. Descriptive and visual summaries of disaster events using artificial intelligence techniques: Case studies of Hurricanes Harvey, Irma, and Maria[J]. Behaviour & Information Technology, 2020, 39(3):288-318. |
[14] | 陈梓, 高涛, 罗年学, 等. 反映自然灾害时空分布的社交媒体有效性探讨[J]. 测绘科学, 2017, 42(8):44-48,129. |
[ Chen Z, Gao T, Luo N X, et al. Empirical discussion on relation between realistic disasters and social media data[J]. Science of Surveying and Mapping, 2017, 42(8):44-48,129. ] | |
[15] |
杨腾飞, 解吉波, 李振宇, 等. 微博中蕴含台风灾害损失信息识别和分类方法[J]. 地球信息科学学报, 2018, 20(7):906-917.
doi: 10.12082/dqxxkx.2018.180062 |
[ Yang T F, Xie J B, Li Z Y, et al. A method of typhoon disaster loss identification and classification using micro-blog information[J]. Journal of Geo-Information Science, 2018, 20(7):906-917. ] | |
[16] |
梁春阳, 林广发, 张明锋, 等. 社交媒体数据对反映台风灾害时空分布的有效性研究[J]. 地球信息科学学报, 2018, 20(6):807-816.
doi: 10.12082/dqxxkx.2018.180022. |
[ Liang C Y, Lin G F, Zhang M F, et al. Assessing the Effectiveness of Social Media Data in Mapping the Distribution of Typhoon Disasters[J]. Journal of Geo-information Science, 2018, 20(6):807-816. ] | |
[17] | 张岩, 李英冰和郑翔.基于微博数据的台风“山竹”舆情演化时空分析[J]. 山东大学学报(工学版), 2020, 50(5):118-126. |
[ Zhang Y, Li Y B, Zheng X. Spatial and temporal analysis of network public opinion evolution of typhoon"Mangkhut"based on Weibo data[J]. Journal of Shandong University(Engineering Science), 2020, 50(5):118-126. ] | |
[18] | Chen J T, She J. An analysis of verifications in microblogging social networks-Sina Weibo[C]// Proceedings of the 32nd IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW). IEEE, 2012:147-154. |
[19] | 王晰巍, 张柳, 黄博, 等. 基于LDA的微博用户主题图谱构建及实证研究——以“埃航空难”为例[J]. 数据分析与知识发现, 2020, 4(10):47-57. |
[ Wang X, Zhang L, Huang B, et al. Constructing topic graph for Weibo users based on LDA: case study of“Egypt Air Disaster”[J]. Data Analysis and Knowledge Discovery, 2020, 4(10):47-57. ] | |
[20] |
Graham M W, Avery E J, Park S. The role of social media in local government crisis communications[J]. Public Relations Review, 2015, 41(3):386-394.
doi: 10.1016/j.pubrev.2015.02.001 |
[21] |
Chatfield A T, Reddick C G. All hands on deck to tweet #sandy: Networked governance of citizen coproduction in turbulent times[J]. Government Information Quarterly, 2018, 35(2):259-272.
doi: 10.1016/j.giq.2017.09.004 |
[22] | Kogan M, Palen L, Anderson K M. Think local, retweet global: retweeting by the geographically- vulnerable during Hurricane Sandy[C]// Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing. ACM, 2015:981-993. |
[23] | 应急管理部救灾和物资保障司. 应急管理部公布2019年全国十大自然灾害[EB/OL]. https://www.mem.gov.cn/xw/bndt/202001/t20200112_343410.shtml, 2020-01-12. |
[ Disaster Relief and Material Support Division, Ministry of Emergency Management of the People's Republic of China. Ministry of Emergency Management announced 10 major natural disasters in 2019[EB/OL]. https://www.mem.gov.cn/xw/bndt/202001/t20200112_343410.shtml, 2020-01-12. ] | |
[24] | 人民网舆情数据中心. 2019年政务指数·微博影响力报告[EB/OL]. http://yuqing.people.com.cn/NMediaFile/2020/0117/MAIN202001171722000261251830504.pdf,2020-01-17. |
[Public Opinion Data Centre of People's Daily Online. Government affairs index microblog influence report 2019[EB/OL]. http://yuqing.people.com.cn/NMediaFile/2020/0117/MAIN202001171722000261251830504.pdf,2020-01-17. ] | |
[25] | Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of machine Learning research, 2003, 3:993-1022. |
[26] | 方东昊. 基于LDA的微博短文本分类技术的研究与实现[D]. 沈阳:东北大学, 2011. |
[ Fang D H. Study and implementation for Microblog's short text classification based on LDA[D]. Shenyang: Northeastern University, 2011. ] | |
[27] | 王鹏, 高铖, 陈晓美. 基于LDA模型的文本聚类研究[J]. 情报科学, 2015, 33(1):63-68. |
[ Wang P, Gao C, Chen X M. Research on LDA model based on text clustering[J]. Information Science, 2015, 33(1):63-68. ] | |
[28] | Xiao H, Stibor T. Efficient collapsed gibbs sampling for latent dirichlet allocation[C]. Proceedings of 2nd Asian Conference on Machine Learning, 2010. |
[29] | 吴祖峰, 王鹏飞, 秦志光, 等. 改进的Louvain社团划分算法[J]. 电子科技大学学报, 2013, 42(1):105-108. |
[ Wu Z F, Wang P F, Qin Z G, et al. Improved Algorithm of Louvain Communities Dipartition[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(1):105-108. ] | |
[30] | Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10):1-12. |
[31] | 黄天诚. 基于图着色的并行Louvain社区发现算法研究[D]. 长春:吉林大学, 2016. |
[ Huang T C. Design of parallel Louvain method for community detection algorithm based on graph coloring[D]. Changchun: Jilin University, 2016. ] | |
[32] | Chen C, Chen J, Shi C. Research on credit evaluation model of online store based on SnowNLP[C]// Proceedings of the 3rd International Conference on Advances in Energy and Environment Research (ICAEER). EDP Sciences, 2018:1-4. |
[1] | 张俊瑶, 杨晓梅, 王志华, 杨海坤, 张博淳, 万庆, 雷梅. 绿色发展理念视角下内蒙古煤矿区格局演变分析[J]. 地球信息科学学报, 2023, 25(8): 1655-1668. |
[2] | 潘佳乐, 信睿. COVID-19疫情前后北美五大湖航运网络多尺度时空变化及影响因素研究[J]. 地球信息科学学报, 2023, 25(7): 1481-1499. |
[3] | 王益鹏, 张雪英, 党玉龙, 叶鹏. 顾及时空过程的台风灾害事件知识图谱表示方法[J]. 地球信息科学学报, 2023, 25(6): 1228-1239. |
[4] | 尹文萍, 张鑫, 谢菲, 樊辉, 陈飞. 野象北移事件舆情演化及其影响机制[J]. 地球信息科学学报, 2023, 25(4): 794-808. |
[5] | 陈宇, 陈思, 李杰, 李怀展, 高延东, 王勇, 杜培军. 融合主成分时空分析与时序InSAR的高精度地表形变信息提取——以徐州地区为例[J]. 地球信息科学学报, 2023, 25(12): 2402-2417. |
[6] | 刘琪, 陈碧宇, 李歆艺. 基于轨迹数据和深度学习的CNG出租车CO2排放微观模型构建及碳减排效益评估方法[J]. 地球信息科学学报, 2023, 25(11): 2191-2203. |
[7] | 成星露, 孙永华, 张王宽, 王一涵, 曹许悦, 王衍昭. 气候干湿冷暖化复合类型的识别与量化方法[J]. 地球信息科学学报, 2023, 25(11): 2204-2217. |
[8] | 赵文双, 江南, 陈云海, 曹一冰. 基于对象流的地缘环境时空分析模型[J]. 地球信息科学学报, 2022, 24(8): 1432-1444. |
[9] | 谢晓苇, 李代超, 卢嘉奇, 吴升, 许芳年. 基于移动监测数据的不同城市场景下PM2.5浓度精细模拟与时空特征解析[J]. 地球信息科学学报, 2022, 24(8): 1459-1474. |
[10] | 梁立锋, 曾文霞, 宋悦祥, 邵振峰, 刘秀娟. 顾及人群集聚和情绪强度的城市综合活力评价及影响因素[J]. 地球信息科学学报, 2022, 24(10): 1854-1866. |
[11] | 林筱妍, 吴升. 基于语义规则和词向量的台风灾害网络情感分析方法[J]. 地球信息科学学报, 2022, 24(1): 114-126. |
[12] | 叶凡, 孙玉, 陈崇成, 于大宇. 基于地理标记照片的个性化景点推荐方法[J]. 地球信息科学学报, 2021, 23(8): 1391-1400. |
[13] | 胡姗, 葛咏, 刘梦晓. 地球信息科学技术在中国减贫中的应用进展[J]. 地球信息科学学报, 2021, 23(8): 1339-1350. |
[14] | 赵飞, 廖永丰. 突发自然灾害事件网络舆情传播特征及影响因素研究[J]. 地球信息科学学报, 2021, 23(6): 992-1001. |
[15] | 王宇琦, 沈润平, 黄安奇, 周旻悦. 2001—2017年中国不同耕作区重建MODIS LAI时空动态[J]. 地球信息科学学报, 2021, 23(4): 658-669. |
|