地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (1): 100-113.doi: 10.12082/dqxxkx.2022.210359
收稿日期:
2021-06-28
修回日期:
2021-09-22
出版日期:
2022-01-25
发布日期:
2022-03-25
通讯作者:
* 姚尧(1987—),男,广东梅州人,副教授,研究方向为空间大数据和城市计算。E-mail: yaoy@cug.edu.cn作者简介:
王旭东(1998— ),男,湖北荆州人,硕士生,主要从事地面沉降和城市发展驱动机制研究。E-mail: wxd@cug.edu.cn
基金资助:
WANG Xudong1(), YAO Yao1,2,*(
), REN Shuliang1, SHI Xuguo1
Received:
2021-06-28
Revised:
2021-09-22
Online:
2022-01-25
Published:
2022-03-25
Contact:
YAO Yao
Supported by:
摘要:
模拟城市土地利用空间变化格局的研究,对未来区域规划以及实现可持续发展具有十分积极的作用。以往基于FLUS的研究栅格尺度较大,如何模拟快速发展中城市的复杂土地利用变化过程,挖掘土地利用变化驱动机制值得进一步探讨。本文构建了耦合FLUS和Markov的城市土地利用格局拟合框架,创新性地引入房价指标表征社会经济属性,以深圳为研究区,基于30 m空间分辨率小栅格尺度的土地利用分类数据和基础地理、路网河网、感兴趣点等多源空间变量,模拟不同发展情景下的未来城市土地利用空间格局,并通过随机森林进行土地利用变化驱动因素分析。研究结果表明:本文提出的耦合FLUS和Markov方法相较于传统CA模型(RFA-CA和Logistic-CA)精度更高(FoM=0.22),能更准确地模拟快速发展中城市的土地利用变化过程;多情景土地利用格局制图结果验证了城市发展过程中生态控制线的重要性,进一步说明本文拟合框架在未来城市规划布局中的参考价值;医院、娱乐场所等的基础设施和公交、路网密度等的基础交通比自然因素(高程、坡度)对城市发展的影响更大,到海岸线距离会在一定程度上限制深圳内部土地利用变化过程。本研究所构建模型及精细制图结果,可为城市区域规划和空间格局模拟等相关研究提供参考依据和理论基础。
王旭东, 姚尧, 任书良, 史绪国. 耦合FLUS和Markov的快速发展城市土地利用空间格局模拟方法[J]. 地球信息科学学报, 2022, 24(1): 100-113.DOI:10.12082/dqxxkx.2022.210359
WANG Xudong, YAO Yao, REN Shuliang, SHI Xuguo. A Coupled FLUS and Markov Approach to Simulate the Spatial Pattern of Land Use in Rapidly Developing Cities[J]. Journal of Geo-information Science, 2022, 24(1): 100-113.DOI:10.12082/dqxxkx.2022.210359
表1
影响因子细节概括
类别 | 空间变量 | 分辨率/m | 含义 |
---|---|---|---|
自然因素 | 高程/m | 30 | 地形高程条件 |
坡度/° | 地形坡度条件 | ||
到河流距离/m | 像元几何中心到最近河流的欧氏距离 | ||
到海岸线距离/m | 像元几何中心到最近海岸线的欧氏距离 | ||
交通因素 | 到主要道路距离/m | 像元几何中心到最近主要道路的欧氏距离 | |
到铁路距离/m | 像元几何中心到最近铁路的欧氏距离 | ||
路网密度/(km/km2) | 每个像元周边的道路分布密度 | ||
到地铁站距离/m | 30 | 像元几何中心到最近地铁站的欧氏距离 | |
公交站分布密度/(个/km2) | 每个像元周边的公交站分布密度 | ||
社会经济因素 | 到医疗设施距离/m | 像元几何中心到最近医疗设施的欧氏距离 | |
到区县中心距离/m | 像元几何中心到最近区县中心的欧氏距离 | ||
到学校距离/m | 像元几何中心到最近学校的欧氏距离 | ||
到娱乐场所距离/m | 像元几何中心到最近娱乐场所的欧氏距离 | ||
房屋价格分布/元 | 30 | 每个像元所在位置的房价精细制图 |
[1] |
De Palma A, Sanchez-Ortiz K, Martin P A, et al. Chapter four - challenges with inferring how land-use affects terrestrial biodiversity: study design, time, space and synthesis[A]. In: Bohan D A, Dumbrell A J, Woodward G, et al. Advances in Ecological Research[M]. Salt Lake City: Academic Press, 2018, 58:163-199. DOI: 10.1016/bs.aecr.2017.12.004
doi: 10.1016/bs.aecr.2017.12.004 |
[2] |
Galbraith S M, Hall T E, Tavárez H S, et al. Local ecological knowledge reveals effects of policy-driven land use and cover change on beekeepers in Costa Rica[J]. Land Use Policy, 2017, 69:112-122. DOI: 10.1016/j.landusepol.2017.08.032
doi: 10.1016/j.landusepol.2017.08.032 |
[3] |
Jayne T S, Chamberlin J, Headey D D. Land pressures, the evolution of farming systems, and development strategies in Africa: a synjournal[J]. Food Policy, 2014, 48:1-17. DOI: 10.1016/j.foodpol.2014.05.014
doi: 10.1016/j.foodpol.2014.05.014 |
[4] |
Brodie J, Wolanski E, Lewis S, et al. An assessment of residence times of land-sourced contaminants in the Great Barrier Reef lagoon and the implications for management and reef recovery[J]. Marine Pollution Bulletin, 2012, 65(4-9):267-279. DOI: 10.1016/j.marpolbul.2011.12.011
doi: 10.1016/j.marpolbul.2011.12.011 pmid: 22284702 |
[5] |
Liu X P, Ma L, Li X, et al. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata[J]. International Journal of Geographical Information Science, 2014, 28(1):148-163. DOI: 10.1080/13658816.2013.831097
doi: 10.1080/13658816.2013.831097 |
[6] |
White R, Engelen G. High-resolution integrated modelling of the spatial dynamics of urban and regional systems[J]. Computers, Environment and Urban Systems, 2000, 24(5):383-400. DOI: 10.1016/S0198-9715(00)00012-0
doi: 10.1016/S0198-9715(00)00012-0 |
[7] |
Clarke K C, Hoppen S, Gaydos L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area[J]. Environment and Planning B: Planning and Design, 1997, 24(2):247-261. DOI: 10.1068/b240247
doi: 10.1068/b240247 |
[8] |
Li X, Yeh A G. Modelling sustainable urban development by the integration of constrained cellular automata and GIS[J]. International Journal of Geographical Information Science, 2000, 14(2):131-152. DOI: 10.1080/136588100240886
doi: 10.1080/136588100240886 |
[9] |
Mitsova D, Shuster W, Wang X H. A cellular automata model of land cover change to integrate urban growth with open space conservation[J]. Landscape and Urban Planning, 2011, 99(2):141-153. DOI: 10.1016/j.landurbplan.2010.10.001
doi: 10.1016/j.landurbplan.2010.10.001 |
[10] |
Lau K H, Kam B H. A cellular automata model for urban land-use simulation[J]. Environment and Planning B: Planning and Design, 2005, 32(2):247-263. DOI: 10.1068/b31110
doi: 10.1068/b31110 |
[11] |
Wu D Q, Liu J, Wang S J, et al. Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(2):235-245. DOI: 10.1007/s00477-009-0313-3
doi: 10.1007/s00477-009-0313-3 |
[12] |
Li X, Yeh A G. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 2002, 16(4):323-343. DOI: 10.1080/13658810210137004
doi: 10.1080/13658810210137004 |
[13] |
Kamusoko C, Gamba J. Simulating urban growth using a Random Forest-cellular Automata (RF-CA) model[J]. ISPRS International Journal of Geo-Information, 2015, 4(2):447-470. DOI: 10.3390/ijgi4020447
doi: 10.3390/ijgi4020447 |
[14] |
Li X, Lin J Y, Chen Y M, et al. Calibrating cellular automata based on landscape metrics by using genetic algorithms[J]. International Journal of Geographical Information Science, 2013, 27(3):594-613. DOI: 10.1080/13658816.2012.698391
doi: 10.1080/13658816.2012.698391 |
[15] |
Feng Y J, Liu Y, Batty M. Modeling urban growth with GIS based cellular automata and least squares SVM rules: A case study in Qingpu: Songjiang area of Shanghai, China[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(5):1387-1400. DOI: 10.1007/s00477-015-1128-z
doi: 10.1007/s00477-015-1128-z |
[16] |
Lin J Y, Li X. Simulating urban growth in a metropolitan area based on weighted urban flows by using web search engine[J]. International Journal of Geographical Information Science, 2015, 29(10):1721-1736. DOI: 10.1080/13658816.2015.1034721
doi: 10.1080/13658816.2015.1034721 |
[17] |
Liu X P, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116. DOI: 10.1016/j.landurbplan.2017.09.019
doi: 10.1016/j.landurbplan.2017.09.019 |
[18] | 朱寿红, 舒帮荣, 马晓冬, 等. 基于"反规划"理念及FLUS模型的城镇用地增长边界划定研究——以徐州市贾汪区为例[J]. 地理与地理信息科学, 2017, 33(5):80-86. |
[ Zhu S H, Shu B R, Ma X D, et al. The delimitation of urban growth boundary based on the idea of “anti-planning” and FLUS model: A case study of Jiawang district, Xuzhou city[J]. Geography and Geo-Information Science, 2017, 33(5):80-86. ] DOI: 10.3969/j.issn.1672-0504.2017.05.013
doi: 10.3969/j.issn.1672-0504.2017.05.013 |
|
[19] |
Liang X, Liu X P, Li X, et al. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method[J]. Landscape and Urban Planning, 2018, 177:47-63. DOI: 10.1016/j.landurbplan.2018.04.016
doi: 10.1016/j.landurbplan.2018.04.016 |
[20] | 张亚飞, 廖和平, 李义龙. 基于反规划与FLUS模型的城市增长边界划定研究——以重庆市渝北区为例[J]. 长江流域资源与环境, 2019, 28(4):21-31. |
[ Zhang Y F, Liao H P, Li Y L. Delimitaion of urban growth boundary based on anti-planning and FLUS model: A case study of Yubei district, Chongqing, China[J]. Resources and Environment in the Yangtze Basin, 2019, 28(4):21-31. ] DOI: 10.11870/cjlyzyyhj201904003
doi: 10.11870/cjlyzyyhj201904003 |
|
[21] |
Chen Z Z, Huang M, Zhu D Y, et al. Integrating remote sensing and a Markov-FLUS model to simulate future land use changes in Hokkaido, Japan[J]. Remote Sensing, 2021, 13(13):2621. DOI: 10.3390/rs13132621
doi: 10.3390/rs13132621 |
[22] |
Feng D R, Bao W K, Fu M C, et al. Current and future land use characters of a national central city in Eco-Fragile Region: A case study in Xi'an city based on FLUS model[J]. Land, 2021, 10(3):286. DOI: 10.3390/land10030286
doi: 10.3390/land10030286 |
[23] |
Huang Y C, Nian P H, Zhang W X. The prediction of interregional land use differences in Beijing: A Markov model[J]. Environmental Earth Sciences, 2015, 73(8):4077-4090. DOI: 10.1007/s12665-014-3693-8
doi: 10.1007/s12665-014-3693-8 |
[24] |
Yang X, Zheng X Q, Chen R. A land use change model: integrating landscape pattern indexes and Markov-CA[J]. Ecological Modelling, 2014, 283:1-7. DOI: 10.1016/j.ecolmodel.2014.03.011
doi: 10.1016/j.ecolmodel.2014.03.011 |
[25] |
Li X, Chen G Z, Liu X P, et al. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions[J]. Annals of the American Association of Geographers, 2017, 107(5):1040-1059. DOI: 10.1080/24694452.2017.1303357
doi: 10.1080/24694452.2017.1303357 |
[26] |
Chen D S, Zhang Y T, Yao Y, et al. Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line: based on nighttime light data and cellular automata[J]. Applied Geography, 2019, 112:102081. DOI: 10.1016/j.apgeog.2019.102081
doi: 10.1016/j.apgeog.2019.102081 |
[27] |
Jokar Arsanjani J, Helbich M, Kainz W, et al. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21:265-275. DOI: 10.1016/j.jag.2011.12.014
doi: 10.1016/j.jag.2011.12.014 |
[28] |
Lin Y P, Chu H J, Wu C F, et al. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling: A case study[J]. International Journal of Geographical Information Science, 2011, 25(1):65-87. DOI: 10.1080/13658811003752332
doi: 10.1080/13658811003752332 |
[29] |
Chen Y M, Li X, Liu X P, et al. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata[J]. Landscape and Urban Planning, 2016, 152:59-71. DOI: 10.1016/j.landurbplan.2016.03.011
doi: 10.1016/j.landurbplan.2016.03.011 |
[30] |
He J L, Li X, Yao Y, et al. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques[J]. International Journal of Geographical Information Science, 2018, 32(10):2076-2097. DOI: 10.1080/13658816.2018.1480783
doi: 10.1080/13658816.2018.1480783 |
[31] | 李秋萍, 刘逸诗, 巩诗瑶, 等. 基于居民出行活动特征的个体经济水平推断方法[J]. 武汉大学学报·信息科学版, 2019, 44(10):1575-1580. |
[ Li Q P, Liu Y S, Gong S Y, et al. Individual income level inference method based on travel behavior of urban residents[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1575-1580. ] DOI: 10.13203/j.whugis20170426
doi: 10.13203/j.whugis20170426 |
|
[32] |
Grömping U. Variable importance assessment in regression: linear regression versus random forest[J]. The American Statistician, 2009, 63(4):308-319. DOI: 10.1198/tast.2009.08199
doi: 10.1198/tast.2009.08199 |
[33] | 深圳市统计局, 国家统计局深圳调查队. 深圳统计年鉴[M]. 北京: 中国统计出版社, 2020. |
[ Shenzhen Bureau of Statistics, Shenzhen Survey Team of National Bureau of Statistics. Shenzhen Statistical Yearbook[M]. Beijing: China Statistics Press, 2020. ] | |
[34] |
Yao Y, Li X, Liu X P, et al. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model[J]. International Journal of Geographical Information Science, 2017, 31(4):825-848. DOI: 10.1080/13658816.2016.1244608
doi: 10.1080/13658816.2016.1244608 |
[35] | 何媛婷, 王石英, 袁再健, 等. 珠江三角洲土地利用变化及其对城市化发展的响应[J]. 生态环境学报, 2020, 29(2):303-310. |
[ He Y T, Wang S Y, Yuan Z J, et al. Land use change and its response to urbanization in the Pearl River Delta[J]. Ecology and Environmental Sciences, 2020, 29(2):303-310. ] DOI: 10.16258/j.cnki.1674-5906.2020.02.011
doi: 10.16258/j.cnki.1674-5906.2020.02.011 |
|
[36] | 王二红, 冯长春, 张爱华. 深圳市建设用地扩展分析[J]. 城市发展研究, 2015, 22(5):38-44. |
[ Wang E H, Feng C C, Zhang A H. Study on Shenzhen construction land expansion[J]. Urban Development Studies, 2015, 22(5):38-44. ] DOI: CNKI:SUN:CSFY.0.2015-05-008
doi: CNKI:SUN:CSFY.0.2015-05-008 |
|
[37] |
Zhang D C, Liu X P, Wu X Y, et al. Multiple intra-urban land use simulations and driving factors analysis: A case study in Huicheng, China[J]. GIScience & Remote Sensing, 2019, 56(2):282-308. DOI: 10.1080/15481603.2018.1507074
doi: 10.1080/15481603.2018.1507074 |
[38] |
Yao Y, Liu X P, Li X, et al. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata[J]. International Journal of Geographical Information Science, 2017, 31(12):2452-2479. DOI: 10.1080/13658816.2017.13 60494
doi: 10.1080/13658816.2017.13 60494 |
[39] |
Yao Y, Zhang J B, Hong Y, et al. Mapping fine-scale urban housing prices by fusing remotely sensed imagery and social media data[J]. Transactions in GIS, 2018, 22(2):561-581. DOI: 10.1111/tgis.12330
doi: 10.1111/tgis.12330 |
[40] |
姚尧, 任书良, 王君毅, 等. 卷积神经网络和随机森林的城市房价微观尺度制图方法[J]. 地球信息科学学报, 2019, 21(2):168-177.
doi: 10.12082/dqxxkx.2019.180508 |
[ Yao Y, Ren S L, Wang J Y, et al. Mapping the fine-scale housing price distribution by integrating a convolutional neural network and random forest[J]. Journal of Geo-information Science, 2019, 21(2):168-177. ] DOI: 10.12082/dqxxkx.2019.180508
doi: 10.12082/dqxxkx.2019.180508 |
[1] | 邢子瑶, 董芯蕊, 昝糈莉, 杨帅, 黄梓焓, 刘哲, 张晓东. 融合VGI和遥感等多源数据的洪涝范围提取与模拟方法[J]. 地球信息科学学报, 2023, 25(9): 1869-1881. |
[2] | 黄高爽, 周杨, 胡校飞, 赵璐颖, 张呈龙. 图像地理定位研究进展[J]. 地球信息科学学报, 2023, 25(7): 1336-1362. |
[3] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[4] | 谭德明, 饶佳艺. 深圳市都市型滨水空间活力影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 809-822. |
[5] | 徐繁树, 王保云, 韩俊. 一种沟谷型潜在泥石流危险性评价方法:基于多源数据融合的卷积神经网络[J]. 地球信息科学学报, 2023, 25(3): 588-605. |
[6] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[7] | 闫兆进, 杨慧. 基于多源数据和船舶停留轨迹语义建模的港口目标识别[J]. 地球信息科学学报, 2022, 24(9): 1662-1675. |
[8] | 邹昕宸, 牟凤云, 王俊秀, 陈建坤, 田甜. 基于多源数据的长江经济带内河港口区位优势度评估[J]. 地球信息科学学报, 2022, 24(9): 1717-1729. |
[9] | 高雪梅, 杨续超, 陈柏儒, 林琳. 基于随机森林模型的环渤海地区人口空间化模拟[J]. 地球信息科学学报, 2022, 24(6): 1150-1162. |
[10] | 邓雅文, 侯鹏, 蒋卫国, 彭凯锋, 荔琢, 邓越. 基于多特征指标和层次聚类分析的河源区范围自动划分方法研究[J]. 地球信息科学学报, 2022, 24(3): 469-482. |
[11] | 吴莞姝, 党煜婷, 赵凯. 基于多维感知的城市活力空间特征研究[J]. 地球信息科学学报, 2022, 24(10): 1867-1882. |
[12] | 郭长庆, 迟文峰, 匡文慧, 窦银银, 傅舒婧, 雷梅. 1990—2020年中国能源开采和加工场地多源数据综合制图与时空变化分析[J]. 地球信息科学学报, 2022, 24(1): 127-140. |
[13] | 曾磊鑫, 刘涛, 杜萍. 基于多源数据的夜间经济时空分布格局研究方法[J]. 地球信息科学学报, 2022, 24(1): 38-49. |
[14] | 戴俊杰, 董婧雯, 杨晟, 孙毅中. 基于空间突变特征的城市边缘区提取方法[J]. 地球信息科学学报, 2021, 23(8): 1401-1421. |
[15] | 黄菲, 刘正才, 谢婷, 何永红. 一种基于NDISI的复合权重波段双差值不透水面提取指数[J]. 地球信息科学学报, 2021, 23(10): 1850-1860. |
|