地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (4): 617-630.doi: 10.12082/dqxxkx.2022.210422
收稿日期:
2021-07-23
修回日期:
2021-09-28
出版日期:
2022-04-25
发布日期:
2022-06-25
通讯作者:
*姜小光(1960— ),男,北京人,教授,博士生导师,主要从事定量遥感、地表真实性检验等研究。 E-mail: xgjiang@ucas.ac.cn作者简介:
韦乐田(1996— ),女,浙江杭州人,硕士生,主要从事热红外定量遥感研究。E-mail: weiletian19@mails.ucas.ac.cn
基金资助:
WEI Letian1(), JIANG Xiaoguang1,2,*(
), WU Hua3, RU Chen1
Received:
2021-07-23
Revised:
2021-09-28
Online:
2022-04-25
Published:
2022-06-25
Contact:
JIANG Xiaoguang
Supported by:
摘要:
热辐射方向性是指从不同方向观测同一目标地物时,测得的热辐射值各异的现象,通常体现为方向性辐亮度或亮温各异。随着高空间分辨率遥感数据的出现,面对高精度地表温度产品的需求,热辐射方向性效应不可忽视,如今已成为热红外遥感重点关注的问题之一。对于物质组成不均一、几何结构复杂的城市地表来说,热辐射方向性尤为显著。本文整理、分析了在城市地区开展的一系列热辐射方向性观测试验和正演模型,其中也包括一些对地表温度真值的有益探索;并对城市热辐射方向性强度的影响因素进行了归纳,包括观测季节与时间、地表几何结构、材料自身的物理属性、观测角度、视场角等,这些因素会使热辐射方向性的强度呈现出一定的时空规律性。最后,针对提高城市地表温度的反演精度、如何更好地开展城市热辐射方向性研究提出了5点展望。
韦乐田, 姜小光, 吴骅, 茹晨. 城市地表热辐射方向性研究进展综述[J]. 地球信息科学学报, 2022, 24(4): 617-630.DOI:10.12082/dqxxkx.2022.210422
WEI Letian, JIANG Xiaoguang, WU Hua, RU Chen. Review of Urban Thermal Radiation Anisotropy[J]. Journal of Geo-information Science, 2022, 24(4): 617-630.DOI:10.12082/dqxxkx.2022.210422
表1
常见的热辐射方向性模型
模型 | 假设 | 优点 | 不足 | 适用场景 | |
---|---|---|---|---|---|
几何三 维模型 | GUTA-sparse[ | 建筑等高、方向随机 分布 | 将核驱动形式引入模型,线性结构使之更为灵活 | 至少需要4个方向的观测数据 | 建筑高距比小于1的稀疏城市表面 |
GUTA-osg[ | 建筑等高、方向随机 分布 | 运用布尔模型解决建筑物阴影重叠的情况 | 没有考虑多重散射和垂直墙面上的阴影 | 建筑高距比小于2的稀疏城市表面 | |
GUTA-dense[ | 建筑等高、方向随机 分布 | 运用布尔模型解决建筑物阴影重叠的情况 | 没有考虑多重散射和发射率的方向性 | 建筑高距比大于2时,需结合GUTA-osg和GUTA-dense模拟 | |
SUM[ | 建筑等高且屋顶均 水平 | 可以计算任一表面在观测视场角中所占的面积比例和光照情况 | 需要输入地表组分的温度和观测角度等信息,使其应用大大受限 | 简化的城市地表 | |
SUMVEG[ | 阴影叶片具有相同程度的阴影,接收的辐射值相同 | 使用光线追踪法和间隙概率法来估计叶片在视场中的辐射贡献 | 需要输入地表组分的温度和植被的生物物理属性等大量信息 | 植被冠层和简化的城市地表 | |
辐射传 输模型 | SOLENE[ | 对流热传递系数是恒定的;建筑内部温度是恒定的 | 可用于计算几何形态较复杂的城市热辐射 | 计算时间长,验证难度大 | 晴朗无云的大气环境,适合微小尺度的热辐射分析 |
TUF-3D[ | 表面由平行的平面组成;能被细分为相同的方形斑块 | 相较于其它辐射传输模型,模型输入较少 | 对建筑的几何形态过于理想化;对流模拟过程较粗糙 | 可模拟复杂的城市地表 | |
TITAN[ | 建筑垂直于地面且等高;表面是朗伯体 | 可以得到总信号的所有辐射贡献 | 需要输入几何场景和大气等大量信息 | 简化的城市地表 | |
DART[ | 将体素作为辐射相互作用的存储单元 | 可以直接模拟大气辐射传输;用户界面操作方便;维护更新及时 | 输入参数多,计算时间长 | 可模拟复杂的城市地表 | |
ATIMOU[ | 建筑垂直于地面且等高;表面是朗伯体平面 | 能够给出LST的解析解,对于反演高精度的城市LST是一个有益的尝试 | 建筑对称等高、街道无限长等假设限制了其实际 应用 | 简化的城市地表 | |
参数 模型 | RL[ | 同一水平冠层的散射体之间没有相互遮挡 | 关注热点效应 | 不考虑阴影效应;在夜间的拟合效果不佳;非线性形式限制其广泛运用 | |
Vinnikov 三核驱动模型[ | 模型由各向同性核、发射率核和太阳核构成 | 低LAI的植被冠层的模拟效果好 | 模拟热点效应能力弱 | ||
TIR-BRDF模型[ | 冠层由叶片、光照土壤和阴影土壤组成 | 观测天顶角小于45°时,TIR-BRDF的模拟效果好 | 至少需要4个方向的观测数据 | ||
GUTA-T[ | 建筑等高、方向随机 分布 | 太阳天顶角约45°时,模拟效果好 | 仅适用于太阳天顶角30~50°的情况;没有考虑热滞后效应 |
[1] | 李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016,20(5):899-920. |
[ Li Z L, Duan S B, Tang B H, et al. Review of methods for land surface temperature derived from thermal infrared remotely sensed data[J]. Journal of Remote Sensing, 2016,20(5):899-920. ] DOI: 10.11834/jrs.20166192
doi: 10.11834/jrs.20166192 |
|
[2] | 毛克彪, 杨军, 韩秀珍, 等. 基于深度动态学习神经网络和辐射传输模型地表温度反演算法研究[J]. 中国农业信息, 2018,30(5):47-57. |
[ Mao K B, Yang J, Han X Z, et al. Retrieving land surface temperature based on deep dynamic learning NN algorithm and radiation transmission model[J]. China Agriculture Information, 2018,30(5):47-57. ] DOI: 10.12105/j.issn.1672-0423.20180506
doi: 10.12105/j.issn.1672-0423.20180506 |
|
[3] | 阎广建, 李小文, 王锦地, 等. 宽波段热红外方向性辐射建模[J]. 遥感学报, 2000,4(3):189-193. |
[ Yan G J, Li X W, Wang J D, et al. Modeling directional effects of thermal emission in wide band measurements[J]. Journal of Remote Sensing, 2000,4(3):189-193. ] DOI: 10.11834/jrs.20000305
doi: 10.11834/jrs.20000305 |
|
[4] | 徐希孺, 范闻捷, 陈良富. 开放的复杂目标热辐射特性的矩阵表达式[J]. 中国科学(D辑:地球科学), 2001,31(12):1046-1051. |
[ Xu X R, Fan W J, Chen L F. Matrix expression of thermal radiation characteristics of open complex targets[J]. Science in China(Series D), 2001,31(12):1046-1051. ] DOI: 10.3969/j.issn.1674-7240.2001.12.011
doi: 10.3969/j.issn.1674-7240.2001.12.011 |
|
[5] |
Lagouarde J P, Dayau S, Moreau P, et al. Directional anisotropy of brightness surface temperature over vineyards: Case study over the medoc region (SW France)[J]. IEEE Geoscience & Remote Sensing Letters, 2013,11(2):574-578. DOI: 10.1109/LGRS.2013.2282492
doi: 10.1109/LGRS.2013.2282492 |
[6] | 马伟, 陈云浩, 占文凤, 等. 城市模拟目标的3维热辐射方向性模型[J]. 遥感学报, 2013,17(1):62-76. |
[ Ma W, Chen Y H, Zhan W F, et al. Thermal anisotropy model for simulated three dimensional urban targets[J]. Journal of Remote Sensing, 2013,17(1):62-76. ] DOI: 10.11834/jrs.20131361
doi: 10.11834/jrs.20131361 |
|
[7] |
Monteith J L, Szeicz G. Radiative temperature in the heat balance of natural surfaces[J]. Quarterly Journal of the Royal Meteorological Society, 1962,88(378):496-507. DOI: 10.1002/qj.49708837811
doi: 10.1002/qj.49708837811 |
[8] |
Voogt J A, Oke T R. Thermal remote sensing of urban climates[J]. Remote Sensing of Environment, 2003,86(3):370-384. DOI: 10.1016/S0034-4257(03)00079-8
doi: 10.1016/S0034-4257(03)00079-8 |
[9] | 周纪, 陈云浩, 李京, 等. 城市区域热辐射方向性研究进展[J]. 地球科学进展, 2009,24(5):497-505. |
[ Zhou J, Chen Y H, Li J, et al. Progress in thermal anisotropy of urban areas: A Review[J]. Advances in Earth Science, 2009,24(5):497-505.] DOI: 10.3321/j.issn:1001-8166.2009.05.005
doi: 10.3321/j.issn:1001-8166.2009.05.005 |
|
[10] |
Chen S S, Ren H Z, Ye X, et al. Geometry and adjacency effects in urban land surface temperature retrieval from high-spatial-resolution thermal infrared images[J]. Remote Sensing of Environment, 2021,262:112518. DOI: 10.1016/j.rse.2021.112518
doi: 10.1016/j.rse.2021.112518 |
[11] |
Cao B, Liu Q H, Du Y M, et al. A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives[J]. Remote Sensing of Environment, 2019,232:111304. DOI: 10.1016/j.rse.2019.111304
doi: 10.1016/j.rse.2019.111304 |
[12] |
Lagouarde J P, Hénon A, Kurz B, et al. Modelling daytime thermal infrared directional anisotropy over Toulouse city centre[J]. Remote Sensing of Environment, 2010,114(1):87-105. DOI: 10.1016/j.rse.2009.08.012
doi: 10.1016/j.rse.2009.08.012 |
[13] |
Bian Z J, Roujean J L, Cao B, et al. Modeling the directional anisotropy of fine-scale TIR emissions over tree and crop canopies based on UAV measurements[J]. Remote Sensing of Environment, 2021,252:112150. DOI: 10.1016/j.rse.2020.112150
doi: 10.1016/j.rse.2020.112150 |
[14] |
Voogt J A, Oke T R. Complete urban surface temperatures[J]. Journal of Applied Meteorology, 1997,36(9):1117-1132. DOI: 10.1175/1520-0450(1997)036<1117:CUST>2.0.CO;2
doi: 10.1175/1520-0450(1997)036<1117:CUST>2.0.CO |
[15] |
Hu L Q, Monaghan A, Voogt J A, et al. A first satellite-based observational assessment of urban thermal anisotropy[J]. Remote Sensing of Environment, 2016,181:111-121. DOI: 10.1016/j.rse.2016.03.043
doi: 10.1016/j.rse.2016.03.043 |
[16] |
Adderley C, Christen A, Voogt J A. The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of an urban canopy[J]. Atmospheric Measurement Techniques Discussions, 2015,8(7):2699-2714. DOI: 10.5194/amt-8-2699-2015
doi: 10.5194/amt-8-2699-2015 |
[17] |
Lagouarde J P, Irvine M. Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: first results[J]. Meteorology & Atmospheric Physics, 2008,102(3-4):173-185. DOI: 10.1007/s00703-008-0325-4
doi: 10.1007/s00703-008-0325-4 |
[18] |
Masson V, Gomes L, Pigeon G, et al. The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment[J]. Meteorology and Atmospheric Physics, 2008,102(3-4):135-157. DOI: 10.1007/s00703-008-0289-4
doi: 10.1007/s00703-008-0289-4 |
[19] |
Duffour C, Lagouarde J P, Roujean J L. A two parameter model to simulate thermal infrared directional effects for remote sensing applications[J]. Remote Sensing of Environment, 2016,186:250-261. DOI: 10.1016/j.rse.2016.08.012
doi: 10.1016/j.rse.2016.08.012 |
[20] |
Wang D D, Chen Y H, Hu L Q, et al. Modeling the angular effect of MODIS LST in urban areas: A case study of Toulouse, France[J]. Remote Sensing of Environment, 2021,257:112361. DOI: 10.1016/j.rse.2021.112361
doi: 10.1016/j.rse.2021.112361 |
[21] |
Sugawara H, Takamura T. Longwave radiation flux from an urban canopy: evaluation via measurements of directional radiometric temperature[J]. Remote Sensing of Environment, 2006,104(2):226-237. DOI: 10.1016/j.rse.2006.01.024
doi: 10.1016/j.rse.2006.01.024 |
[22] |
Morrison W, Kotthaus S, Grimmond C S B, et al. A novel method to obtain three-dimensional urban surface temperature from ground-based thermography[J]. Remote Sensing and Environment, 2018,215:268-283. DOI: 10.1016/j.rse.2018.05.004
doi: 10.1016/j.rse.2018.05.004 |
[23] |
Soux A, Voogt J A, Oke T R. A model to calculate what a remote sensor 'sees' of an urban surface[J]. Boundary-Layer Meteorology, 2004,111(1):109-132. DOI: 10.1023/B:BOUN.0000010995.62115.46
doi: 10.1023/B:BOUN.0000010995.62115.46 |
[24] | 占文凤, 陈云浩, 马伟, 等. 城市目标方向亮温观测的视场效应分析[J]. 遥感学报, 2010,14(2):372-386. |
[ Zhan W F, Chen Y H, Ma W, et al. FOV effect analysis in directional brightness temperature observations for urban targets[J]. Journal of Remote Sensing, 2010,14(2):372-386. ] DOI: 10.11834/jrs.20100213
doi: 10.11834/jrs.20100213 |
|
[25] |
Voogt J A, Oke T R. Effects of urban surface geometry on remotely-sensed surface temperature[J]. International Journal of Remote Sensing, 1998,19(5):895-920. DOI: 10.1080/014311698215784
doi: 10.1080/014311698215784 |
[26] |
Sugawara H, Narita K I, Mikami T. Estimation of effective thermal property parameter on a heterogeneous urban surface[J]. Journal of the Meteorological Society of Japan, 2002,79(6):1169-1181. DOI: 10.2151/jmsj.79.1169
doi: 10.2151/jmsj.79.1169 |
[27] |
Lagouarde J P, Moreau P, Irvine M, et al. Airborne experimental measurements of the angular variations in surface temperature over urban areas: case study of Marseille (France)[J]. Remote Sensing of Environment, 2004,93(4):443-462. DOI: 10.1016/j.rse.2003.12.011
doi: 10.1016/j.rse.2003.12.011 |
[28] |
Lagouarde J P, Hénon A, Irvine M, et al. Experimental characterization and modelling of the nighttime directional anisotropy of thermal infrared measurements over an urban area: Case study of Toulouse (France)[J]. Remote Sensing of Environment, 2012,117(3-4):19-33. DOI: 10.1016/j.rse.2011.06.022
doi: 10.1016/j.rse.2011.06.022 |
[29] |
Lagouarde J P, Ommandoire D C, Irvine M, et al. Atmospheric boundary-layer turbulence induced surface temperature fluctuations. Implications for TIR remote sensing measurements[J]. Remote Sensing of Environment, 2013,138(2):189-198. DOI: 10.1016/j.rse.2013.06.011
doi: 10.1016/j.rse.2013.06.011 |
[30] | 余涛, 田启燕, 顾行发, 等. 城市简单目标方向亮温研究[J]. 遥感学报, 2006,10(5):661-669. |
[ Yu T, Tian Q Y, Gu X F, et al. Modelling directional brightness temperature over a simple typical structure of urban areas[J]. Journal of Remote Sensing, 2006,10(5):661-669. ] | |
[31] | 刘强, 肖青, 刘志刚, 等. 黑河综合遥感联合试验中机载WiDAS数据的预处理方法[J]. 遥感技术与应用, 2010,25(6):797-804. |
[ Liu Q, Xiao Q, Liu Z G, et al. Image processing method of airborne WiDAS sensor in WATER Campaign[J]. Remote Sensing Technology and Application, 2010,25(6):797-804. ] DOI: 10.11873/j.issn.1004-0323.2010.6.797
doi: 10.11873/j.issn.1004-0323.2010.6.797 |
|
[32] |
Yang J X, Wong M S, Ho H C, et al. A semi-empirical method for estimating complete surface temperature from radiometric surface temperature, a study in Hong Kong city[J]. Remote Sensing of Environment, 2020,237:111540. DOI: 10.1016/j.rse.2019.111540
doi: 10.1016/j.rse.2019.111540 |
[33] |
Yang J X, Menenti M, Wu Z F, et al. Assessing the impact of urban geometry on surface urban heat island using complete and nadir temperatures[J]. International Journal of Climatology, 2020,41(1):E3219-E3238. DOI: 10.1002/joc.6919
doi: 10.1002/joc.6919 |
[34] | 李召良, Stoll M P, 张仁华. 利用ATSR数据分解土壤和植被温度的研究[J]. 中国科学E辑:技术科学, 2000,30(S1):27-38. |
[ Li Z L, Stoll M P, Zhang R H. Decomposition of soil and vegetation temperature using ATSR data[J]. Science in China(Series E), 2000,30(S1):27-38. ] DOI: 10.3321/j.issn:1006-9275.2000.z1.005
doi: 10.3321/j.issn:1006-9275.2000.z1.005 |
|
[35] | 阎广建, 姜海兰, 闫凯, 等. 多角度光学定量遥感[J]. 遥感学报, 2021,25(1):83-108. |
[ Yan G J, Jiang H L, Yan K, et al. Review of optical multi-angle quantitative remote sensing[J]. Journal of Remote Sensing, 2021,25(1):83-108. ] DOI: 10.11834/jrs.20218355
doi: 10.11834/jrs.20218355 |
|
[36] |
Vinnikov K Y, Yu Y, Goldberg M D, et al. Angular anisotropy of satellite observations of land surface temperature[J]. Geophysical Research Letters, 2012,39(23). DOI: 10.1029/2012GL054059
doi: 10.1029/2012GL054059 |
[37] |
Jackson R D, Reginato R J, Pinter P J, et al. Plant canopy information extraction from composite scene reflectance of row crops[J]. Applied Optics, 1979,18(22):3775-3782. DOI: 10.1364/AO.18.003775
doi: 10.1364/AO.18.003775 pmid: 20216693 |
[38] |
Kimes D S, Kirchner J A. Directional radiometric measurements of row-crop temperatures[J]. International Journal of Remote Sensing, 1983,4(2):299-311. DOI: 10.1080/01431168308948548
doi: 10.1080/01431168308948548 |
[39] |
Wang D D, Chen Y H, Zhan W F. A geometric model to simulate thermal anisotropy over a sparse urban surface (GUTA-sparse)[J]. Remote Sensing of Environment, 2018,209:263-274. DOI: 10.1016/j.rse.2018.02.051
doi: 10.1016/j.rse.2018.02.051 |
[40] |
Wang D D, Chen Y H, Cui Y H, et al. A geometric model to simulate urban thermal anisotropy for simplified neighborhoods[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018,56(8):4930-4944. DOI: 10.1109/TGRS.2018.2842794
doi: 10.1109/TGRS.2018.2842794 |
[41] |
Wang D D, Chen Y H. A geometric model to simulate urban thermal anisotropy in simplified dense neighborhoods (GUTA-dense)[J]. IEEE Transactions on Geoscience & Remote Sensing, 2019,57(8):6226-6239. DOI: 10.1109/TGRS.2019.2904871
doi: 10.1109/TGRS.2019.2904871 |
[42] |
Dyce D R, Voogt J A. The influence of tree crowns on urban thermal effective anisotropy[J]. Urban Climate, 2018,23(SI):91-113. DOI: 10.1016/j.uclim.2017.02.006
doi: 10.1016/j.uclim.2017.02.006 |
[43] | Groleau D, Ragnaud F F, Rosant J M. Simulation of the radiative behaviour of an urban quarter of marseille with the solene model[C]. Fifth International Conference on Urban Climate, Lodz, Pologne, 2003. |
[44] |
Henon A, Mestayer P G, Groleau D, et al. High resolution thermo-radiative modeling of an urban fragment in Marseilles city center during the UBL-ESCOMPTE campaign[J]. Building & Environment, 2011,46(9):1747-1764. DOI: 10.1016/j.buildenv.2011.02.001
doi: 10.1016/j.buildenv.2011.02.001 |
[45] |
Kanda M, Kawai T, Nakagawa K. A simple theoretical radiation scheme for regular building arrays[J]. Boundary-Layer Meteorology, 2005,114(1):71-90. DOI: 10.1007/s10546-004-8662-4
doi: 10.1007/s10546-004-8662-4 |
[46] |
Kawai T, Kanda M. 3-Dimensional radiation model for urban canopy[J]. Proceedings of Hydraulic Engineering, 2003,47:55-60. DOI: 10.2208/prohe.47.55
doi: 10.2208/prohe.47.55 |
[47] |
Krayenhoff E S, Voogt J A. A microscale three-dimensional urban energy balance model for studying surface temperatures[J]. Boundary-Layer Meteorology, 2007,123(3):433-461. DOI: 10.1007/s10546-006-9153-6
doi: 10.1007/s10546-006-9153-6 |
[48] |
Krayenhoff E S, Voogt J A. Daytime thermal anisotropy of urban neighbourhoods: Morphological causation[J]. Remote Sensing, 2016,8(2):1-22. DOI: 10.3390/rs8020108
doi: 10.3390/rs8020108 |
[49] |
Fontanilles G, Briottet X, Fabre S, et al. Thermal Infrared Radiance Simulation with Aggregation Modeling (TITAN): An Infrared Radiative Transfer Model for Heterogeneous Three-dimensional Surface--Application over Urban Areas[J]. Applied Optics, 2008,47(31):5799-810. DOI: 10.1364/AO.47.005799
doi: 10.1364/AO.47.005799 |
[50] |
Gastellu-Etchegorry J P. 3D Modeling of satellite spectral images, radiation budget and energy budget of urban landscapes[J]. Meteorology & Atmospheric Physics, 2008,102(3-4SI):187-207. DOI: 10.1007/s00703-008-0344-1
doi: 10.1007/s00703-008-0344-1 |
[51] |
Gastellu-Etchegorry J P, Yin T G, Nicolas L, et al. Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes[J]. Remote Sensing, 2015,7(2):1667-1701. DOI: 10.3390/rs70201667
doi: 10.3390/rs70201667 |
[52] |
Zheng X, Gao M, Li Z, et al. Impact of 3-D Structures and Their Radiation on Thermal Infrared Measurements in Urban Areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(12). DOI: 10.1109/TGRS.2020.2987880
doi: 10.1109/TGRS.2020.2987880 |
[53] |
Cao B, Roujean J L, Gastellu-Etchegorry J P, et al. A general framework of kernel-driven modeling in the thermal infrared domain[J]. Remote Sensing of Environment, 2021,252:112157. DOI: 10.1016/j.rse.2020.112157
doi: 10.1016/j.rse.2020.112157 |
[54] | 彭菁菁, 刘强, 柳钦火, 等. 多角度热红外亮温值的模型拟合与应用[J]. 红外与毫米波学报, 2011,30(4):361-365,371. |
[ Peng J J, Liu Q, Liu Q H, et al. Kernel-driven model fitting of multi-angle thermal infrared brightness temperature and its application[J]. Journal of Infrared and Millimeter Waves, 2011,30(4):361-365,371. ] | |
[55] |
Ren H Z, Liu R Y, Yan G J, et al. Angular normalization of land surface temperature and emissivity using multiangular middle and thermal infrared data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014,52(8):4913-4931. DOI: 10.1109/TGRS.2013.2285924
doi: 10.1109/TGRS.2013.2285924 |
[56] |
Ren H Z, Yan G J, Liu R Y, et al. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface[J]. Sensors, 2015,15(4):7537-7570. DOI: 10.3390/s150407537
doi: 10.3390/s150407537 |
[57] |
Jiang L, Zhan W F, Voogt J A, et al. Remote estimation of complete urban surface temperature using only directional radiometric temperatures[J]. Building & Environment, 2018,135(MAY):224-236. DOI: 10.1016/j.buildenv.2018.03.005
doi: 10.1016/j.buildenv.2018.03.005 |
[58] |
Jiang L, Zhan W F, Zou Z X. Two methods for remote estimation of complete urban surface temperature[C]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Wuhan, China, 2017. DOI: 10.5194/isprs-archives-XLII-2-W7-479-2017
doi: 10.5194/isprs-archives-XLII-2-W7-479-2017 |
[59] |
Jiang L, Zhan W F, Hu L Q, et al. Assessment of different kernel-driven models for daytime urban thermal radiation directionality simulation[J]. Remote Sensing of Environment, 2021,263:112562. DOI: 10.1016/j.rse.2021.112562
doi: 10.1016/j.rse.2021.112562 |
[60] |
Liu X Y, Tang B H, Li Z L. Evaluation of three parametric models for estimating directional thermal radiation from simulation, airborne, and satellite data[J]. Remote Sensing, 2018,10(3):420. DOI: 10.3390/rs10030420
doi: 10.3390/rs10030420 |
[61] |
Yang J X, Wong M S, Menenti M, et al. Study of the geometry effect on land surface temperature retrieval in urban environment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,109:77-87. DOI: 10.1016/j.isprsjprs.2015.09.001
doi: 10.1016/j.isprsjprs.2015.09.001 |
[62] |
Yang J X, Wong M S, Menenti M, et al. Modeling the effective emissivity of the urban canopy using sky view factor[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:211-219. DOI: 10.1016/j.isprsjprs.2015.04.006
doi: 10.1016/j.isprsjprs.2015.04.006 |
[63] |
Yang J X, Wong M S, Menenti M, et al. Development of an improved urban emissivity model based on sky view factor for retrieving effective emissivity and surface temperature over urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,122:30-40. DOI: 10.1016/j.isprsjprs.2016.09.007
doi: 10.1016/j.isprsjprs.2016.09.007 |
[64] |
Yang J X, Wong M S, Menenti M. Effects of urban geometry on turbulent fluxes: A remote sensing perspective[J]. IEEE Geoscience and Remote Sensing Letters, 2016,13(12):1767-1771. DOI: 10.1109/LGRS.2016.2607759
doi: 10.1109/LGRS.2016.2607759 |
[65] |
Wang D D, Chen Y H, Voogt J A, et al. An advanced geometric model to simulate thermal anisotropy time-series for simplified urban neighborhoods (GUTA-T)[J]. Remote Sensing of Environment, 2020,237:111547. DOI: 10.1016/j.rse.2019.111547
doi: 10.1016/j.rse.2019.111547 |
[66] | 符锴华. 基于3-D模拟的典型植被热辐射方向性研究[D]. 北京:中国科学院研究生院(遥感应用研究所), 2005. |
[ Fu K H. The study on thermal infrared emission directionality of typical soil-vegetation canopy based on 3-D structure simulation model[D]. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2005. ] | |
[67] |
Coll C, Galve J M, Niclòs R, et al. Angular variations of brightness surface temperatures derived from dual-view measurements of the Advanced Along-Track Scanning Radiometer using a new single band atmospheric correction method[J]. Remote Sensing of Environment, 2019,223:274-290. DOI: 10.1016/j.rse.2019.01.021
doi: 10.1016/j.rse.2019.01.021 |
[68] |
Voogt J A. Assessment of an urban sensor view model for thermal anisotropy[J]. Remote Sensing of Environment, 2008,112(2):482-495. DOI: 10.1016/j.rse.2007.05.013
doi: 10.1016/j.rse.2007.05.013 |
[69] |
Hu L Q, Wendel J. Analysis of urban surface morphologic effects on diurnal thermal directional anisotropy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,148:1-12. DOI: 10.1016/j.isprsjprs.2018.12.004
doi: 10.1016/j.isprsjprs.2018.12.004 |
[70] |
Pasha Y S, Fshari A A. Assessment and improvement of the accuracy of radiation heat transfer estimation in simplified urban canopy models[J]. Energy Procedia, 2017,143:532-539. DOI: 10.1016/j.egypro.2017.12.722
doi: 10.1016/j.egypro.2017.12.722 |
[71] |
Zheng X P, Li Z L, Chen K S, et al. Assessment of the urban three-dimensional structural influence on the satellite thermal infrared measurement[C]. 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), Rome, Italy, 2019. DOI: 10.1109/PIERS-Spring46901.2019.9017315
doi: 10.1109/PIERS-Spring46901.2019.9017315 |
[72] |
Forouzandeh A, Richter T. Accurate prediction of heating energy demand of courtyard's surrounding envelopes using temperature correction factor[J]. Energy and Buildings, 2019,193:49-68. DOI: 10.1016/j.enbuild.2019.03.030
doi: 10.1016/j.enbuild.2019.03.030 |
[73] | 周伟奇, 田韫钰. 城市三维空间形态的热环境效应研究进展[J]. 生态学报, 2020,40(2):416-427. |
[ Zhou W Q, Tian Y Y. Effects of urban three-dimensional morphology on thermal environment: a review[J]. Acta Ecologica Sinica, 2020,40(2):416-427. ] DOI: 10.5846/stxb201902250353
doi: 10.5846/stxb201902250353 |
|
[74] |
Hilland R, Voogt J A. The effect of sub-facet scale surface structure on wall brightness temperatures at multiple scales[J]. Theoretical and Applied Climatology, 2020,140(14):767-785. DOI: 10.1007/s00704-020-03094-7
doi: 10.1007/s00704-020-03094-7 |
[75] |
Minnis P, Khaiyer M M. Anisotropy of land surface skin temperature derived from satellite data[J]. Journal of Applied Meteorology, 2000,39(7):1117-1129. DOI: 10.1175/1520-0450(2000)039<1117:AOLSST>2.0.CO;2
doi: 10.1175/1520-0450(2000)039<1117:AOLSST>2.0.CO |
[76] |
Pinheiro A C T, Privette J L, Mahoney R, et al. Directional effects in a daily AVHRR land surface temperature dataset over africa[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(9):1941-1954. DOI: 10.1109/TGRS.2004.831886
doi: 10.1109/TGRS.2004.831886 |
[77] | 杨英宝, 苏伟忠, 江南. 基于遥感的城市热岛效应研究[J]. 地理与地理信息科学, 2006,22(5):36-40. |
[ Yang Y B, Su W Z, Jiang N. Application of remote sensing to study urban heat island effect[J]. Geography and Geo-Information Science, 2006,22(5):36-40. ] DOI: 10.3969/j.issn.1672-0504.2006.05.007
doi: 10.3969/j.issn.1672-0504.2006.05.007 |
|
[78] |
Li N N, Li X M. The impact of building thermal anisotropy on surface urban heat island intensity estimation: An observational case study in Beijing[J]. IEEE Geoscience and Remote Sensing Letters, 2020,17(12):2030-2034. DOI: 10.1109/LGRS.2019.2962383
doi: 10.1109/LGRS.2019.2962383 |
[79] | 赵艳华, 赵利民. 红外多角度观测的优势分析[J]. 航天返回与遥感, 2017,38(1):30-37. |
[ Zhao Y H, Zhao L M. Analysis of advantages of multi-angle infrared observation[J]. Spacecraft Recovery & Remote Sensing, 2017,38(1):30-37. ] DOI: 10.3969/j.issn.1009-8518.2017.01.005
doi: 10.3969/j.issn.1009-8518.2017.01.005 |
|
[80] |
Ermida S L, DaCamara C C, Trigo I F, et al. Modelling directional effects on remotely sensed land surface temperature[J]. Remote Sensing and Environment, 2017,190:56-69. DOI: 10.1016/j.rse.2016.12.008
doi: 10.1016/j.rse.2016.12.008 |
[81] |
Ermida S L, Trigo I F, DaCamara C C, et al. Assessing the potential of parametric models to correct directional effects on local to global remotely sensed LST[J]. Remote Sensing and Environment, 2018,209:410-422. DOI: 10.1016/j.rse.2018.02.066
doi: 10.1016/j.rse.2018.02.066 |
[82] |
Ghent D J, Corlett G K, G Ttsche F M, et al. Global land surface temperature from the along-track scanning radiometers[J]. Journal of Geophysical Research Atmospheres, 2017,122(22):12167-12193. DOI: 10.1002/2017JD027161
doi: 10.1002/2017JD027161 |
[1] | 王杰, 黄春林, 郝晓华. 一种考虑雪粒径变化的积雪面积反演算法[J]. 地球信息科学学报, 2017, 19(1): 101-109. |
[2] | 彭硕, 唐伯惠, 李召良, 吴骅, 唐荣林. 热红外地表方向性辐射温度与半球辐射温度关系研究[J]. 地球信息科学学报, 2016, 18(1): 106-116. |
[3] | 李帆, 何洪林, 任小丽, 张黎, 路倩倩, 于贵瑞. 基于MapReduce的空间敏感性分析并行算法设计[J]. 地球信息科学学报, 2014, 16(6): 874-881. |
[4] | 王占刚, 庄大方, 明涛. 林木冠层光合有效辐射分布模拟的研究[J]. 地球信息科学学报, 2008, 10(6): 697-702. |
|