地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (6): 1163-1175.doi: 10.12082/dqxxkx.2022.210534
收稿日期:
2021-09-06
修回日期:
2021-10-09
出版日期:
2022-06-25
发布日期:
2022-08-25
通讯作者:
*程昌秀(1973— ),女,新疆乌鲁木齐人,教授,博导,主要从事地理数据挖掘与分析研究。E-mail: chengcx@bnu.edu.cn作者简介:
耿佳辰(1998— ),男,北京人,硕士生,主要从事地理数据挖掘与分析研究。E-mail: gengjc@mail.bnu.edu.cn
基金资助:
GENG Jiachen1,2(), SHEN Shi1,2, CHENG Changxiu1,2,*(
)
Received:
2021-09-06
Revised:
2021-10-09
Online:
2022-06-25
Published:
2022-08-25
Contact:
CHENG Changxiu
Supported by:
摘要:
黄河流域生态保护与高质量发展是我国新时代的重大战略任务。探究黄河流域PM2.5浓度的时空变化趋势,并分析其社会经济影响因素,对该地区的大气污染防治和实现高质量发展具有重要意义。本文采用时间序列趋势估计、空间自相关分析、地理探测器和地理加权回归方法,揭示了“十三五”时期年黄河流域不同尺度(全流域以及61个地级市)PM2.5浓度值和变化趋势的时空分异特征,定量探究了社会经济因素对PM2.5浓度的影响机制及其时空过程。结果表明:① 在“十三五”时期,黄河流域的PM2.5污染情况整体好转,其浓度呈波动下降的趋势,平均每年下降约4.2 μg/m³,彰显了我国大气污染防治攻坚战取得的重要成效;② 山东、河南、山西和陕西的PM2.5浓度值较高,但山东、河南改善速度较快,山西和陕西改善速度较慢;③ 以目前的改善速率推算,在黄河流域61个地级市中,54个市将能够完成“十四五”规划中PM2.5浓度下降10%的目标,而咸阳、西安、榆林、太原、临汾、运城、晋城7市将难以完成;④ 人口密度、工业企业数、土地利用强度是导致黄河流域PM2.5浓度升高的主要社会经济因素,其解释力均达到50%以上;⑤ 从2015—2019年,土地利用程度指数和人口密度的主要影响区域均转移至黄河流域中部地区,建议山西、陕西、内蒙古应作为下一阶段治理工作关注的重点区域;⑥ 促进与环境承载力相协调的城乡发展、控制工业规模并提高其环保水平,是进一步治理黄河流域大气污染的重要策略。
耿佳辰, 沈石, 程昌秀. “十三五”时期黄河流域PM2.5时空分布规律及多尺度社会经济影响机制分析[J]. 地球信息科学学报, 2022, 24(6): 1163-1175.DOI:10.12082/dqxxkx.2022.210534
GENG Jiachen, SHEN Shi, CHENG Changxiu. Spatio-temporal Evolution and the Multi-scale Socio-economic Influencing Mechanism of PM2.5 in the Yellow River Basin during the China's 13th Five-Year Plan[J]. Journal of Geo-information Science, 2022, 24(6): 1163-1175.DOI:10.12082/dqxxkx.2022.210534
表4
社会经济因子对PM2.5的解释力及显著性
社会经 济因子 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q | p | q | p | q | p | q | p | q | p | |||||
GDP | 0.43 | 0.0229* | 0.41 | 0.0373* | 0.19 | 0.9520 | 0.45 | 0.0088** | 0.46 | 0.0149* | ||||
GDP_P1 | 0.27 | 0.0071** | 0.26 | 0.0092** | 0.07 | 0.6521 | 0.19 | 0.1292 | 0.15 | 0.3571 | ||||
GDP_P2 | 0.16 | 0.2463 | 0.17 | 0.0858 | 0.12 | 0.4193 | 0.21 | 0.0424* | 0.29 | 0.0045** | ||||
GDP_P3 | 0.09 | 0.6530 | 0.07 | 0.6956 | 0.08 | 0.6823 | 0.09 | 0.3958 | 0.30 | 0.0028** | ||||
IndEA | 0.62 | 0.0001*** | 0.62 | 0.0001*** | 0.56 | 0.0442* | 0.48 | 0.0861 | 0.55 | 0.0154* | ||||
UrbRA | 0.20 | 0.9243 | 0.21 | 0.8495 | 0.16 | 0.9362 | 0.14 | 0.9106 | 0.13 | 0.9720 | ||||
Bus | 0.17 | 0.9940 | 0.22 | 0.9822 | 0.25 | 0.9642 | 0.16 | 0.9745 | 0.19 | 0.9926 | ||||
LI | 0.50 | 0.0001*** | - | - | - | - | - | - | 0.58 | 0.0001*** | ||||
Elc | 0.11 | 0.9855 | 0.11 | 0.9905 | 0.19 | 0.8483 | 0.10 | 0.9617 | 0.25 | 0.7489 | ||||
Pop | 0.74 | 0.0001*** | 0.77 | 0.0001*** | 0.77 | 0.0001*** | 0.74 | 0.0001*** | 0.73 | 0.0001*** |
[1] | 杨永春, 穆焱杰, 张薇. 黄河流域高质量发展的基本条件与核心策略[J]. 资源科学, 2020, 42(3):409-423. |
[ Yang Y C, Mu Y J, Zhang W. Basic conditions and core strategies of high-quality development in the Yellow River Basin[J]. Resources Science, 2020, 42(3):409-423. ] DOI: 10.18402/resci.2020.03.01
doi: 10.18402/resci.2020.03.01 |
|
[2] |
Mi Y, Sun K, Li L, et al. Spatiotemporal pattern analysis of PM2.5 and the driving factors in the middle Yellow River urban agglomerations[J]. Journal of Cleaner Production, 2021, 299. DOI: 10.1016/j.jclepro.2021.126904
doi: 10.1016/j.jclepro.2021.126904 |
[3] | 中华人民共和国生态环境部. 2019年全国生态环境质量简况[J]. 环境保护, 2020, 48(10):8-10. |
Ministry of Ecology and Environment of the People’s Republic of China. Brief introduction of national ecological environment quaility in 2019. Environmental Protection, 2020, 48(10):8-10. ] DOI: 10.14026/j.cnki.0253-9705.2020.10.002
doi: 10.14026/j.cnki.0253-9705.2020.10.002 |
|
[4] |
Tian S, Pan Y, Liu Z, et al. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China[J]. Journal of Hazardous Materials, 2014, 279:452-460. DOI: 10.1016/j.jhazmat.2014.07.023
doi: 10.1016/j.jhazmat.2014.07.023 |
[5] |
Pui D Y H, Chen S C, Zuo Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014, 13(1):1-26. DOI: 10.1016/j.partic.2013.11.001
doi: 10.1016/j.partic.2013.11.001 |
[6] |
Xie Y, Dai H, Dong H, et al. Economic impacts from PM2.5 pollution-related health effects in China: A provincial-level analysis[J]. Environmental Science and Technology, 2016, 50(9):4836-4843. DOI: 10.1021/acs.est.5b05576
doi: 10.1021/acs.est.5b05576 |
[7] |
Maji K J, Ye W, Arora M, et al. PM2.5-related health and economic loss assessment for 338 Chinese cities[J]. Environment International, 2018, 121(September):392-403. DOI: 10.1016/j.envint.2018.09.024
doi: 10.1016/j.envint.2018.09.024 |
[8] |
Yang G, Wang Y, Zeng Y, et al. Rapid health transition in China, 1990-2010: Findings from the Global Burden of disease study 2010[J]. The Lancet, 2013, 381(9882):1987-2015. DOI: 10.1016/S0140-6736(13)61097-1
doi: 10.1016/S0140-6736(13)61097-1 |
[9] |
Matus K, Nam K M, Selin N E, et al. Health damages from air pollution in China[J]. Global Environmental Change, 2012, 22(1):55-66. DOI: 10.1016/j.gloenvcha.2011.08.006
doi: 10.1016/j.gloenvcha.2011.08.006 |
[10] |
刘海猛, 方创琳, 黄解军,等. 京津冀城市群大气污染的时空特征与影响因素解析[J]. 地理学报, 2018, 73(1):177-191.
doi: 10.11821/dlxb201801015 |
[ Liu H M, Fang C L, Huang J J, et al. The spatial-temporal characteristics and influencing factors of air pollution in Beijing-Tianjin-Hebei urban agglomeration[J]. Acta Geographica Sinica, 2018, 73(1):177-191. ] DOI: 10.11821/dlxb201801015
doi: 10.11821/dlxb201801015 |
|
[11] | 王敏, 冯相昭, 杜晓林,等. 黄河流域空气质量时空分布及影响因素分析[J]. 环境保护, 2019, 47(24):56-61. |
[ Wang M, Feng X Z, Du X L, et al. Spatial-temporal distribution of air quality and its influencing factors in the Yellow River Basin[J]. Environmental Protection, 2019, 47(24):56-61. ] DOI: 10.14026/j.cnki.0253-9705.2019.24.012
doi: 10.14026/j.cnki.0253-9705.2019.24.012 |
|
[12] |
Xu P, Chen Y, Ye X. Haze, air pollution, and health in China[J]. The Lancet, 2013, 382(9910):2067. DOI: 10.1016/S0140-6736(13)62693-8
doi: 10.1016/S0140-6736(13)62693-8 |
[13] |
Guan D, Su X, Zhang Q, et al. The socioeconomic drivers of China's primary PM2.5 emissions[J]. Environmental Research Letters, 2014, 9(2). DOI: 10.1088/1748-9326/9/2/024010
doi: 10.1088/1748-9326/9/2/024010 |
[14] |
Yang D, Ye C, Wang X, et al. Global distribution and evolvement of urbanization and PM2.5 (1998-2015)[J]. Atmospheric Environment, 2018, 182:171-178. DOI: 10.1016/j.atmosenv.2018.03.053
doi: 10.1016/j.atmosenv.2018.03.053 |
[15] |
Chen J, Zhou C, Wang S, et al. Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally[J]. Applied Energy, 2018, 230(8):94-105. DOI: 10.1016/j.apenergy.2018.08.089
doi: 10.1016/j.apenergy.2018.08.089 |
[16] |
Lu D, Mao W, Yang D, et al. Effects of land-use and landscape pattern on PM2.5 in Yangtze River Delta in China[J]. Atmospheric Pollution Research, 2018, 9(4):705-713. DOI: 10.1016/j.apr.2018.01.012
doi: 10.1016/j.apr.2018.01.012 |
[17] |
Zhang X, Gu X, Cheng C, et al. Spatiotemporal heterogeneity of PM2.5 and its relationship with urbanization in North China from 2000 to 2017[J]. Science of the Total Environment, 2020, 744:1-10. DOI: 10.1016/j.scitotenv.2020.140925
doi: 10.1016/j.scitotenv.2020.140925 |
[18] |
Ding Y, Zhang M, Qian X, et al. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China[J]. Journal of Cleaner Production, 2019, 211:1480-1490. DOI: 10.1016/j.jclepro.2018.11.159
doi: 10.1016/j.jclepro.2018.11.159 |
[19] | 李衡, 韩燕. 黄河流域PM2.5时空演变特征及其影响因素分析[J/OL]. 世界地理研究:1-14[2021-09-30] |
[ Li H Han Y. Analysis on the spatial-temporal evolution characteristics of PM2.5 and its influencing factors in the Yellow River Basin[J]. World Regional Studies, 1-14[2021-09-30]. ] DOI: 10.3969/j.issn.1004-9479.2022.01.2020212
doi: 10.3969/j.issn.1004-9479.2022.01.2020212 |
|
[20] | 陈世强, 张航, 齐莹,等. 黄河流域雾霾污染空间溢出效应与影响因素[J]. 经济地理, 2015, 40(5):40-48. |
[ Chen S Q, Zhang H, Qi Y, et al. Spatial spillover effect and influencing factors of haze pollution in the Yellow River Basin[J]. Economic Geography, 2015, 40(5):40-48. ] DOI: 10.1 5957/j.cnki.jjdl.2020.05.005
doi: 10.1 5957/j.cnki.jjdl.2020.05.005 |
|
[21] |
Ottinger M, Kuenzer C, Liu G, et al. Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM[J]. Applied Geography, 2013, 44:53-68. DOI: 10.1016/j.apgeog.2013.07.003
doi: 10.1016/j.apgeog.2013.07.003 |
[22] |
Wu X, Zhang X, Xiang X, et al. Changing runoff generation in the source area of the Yellow River: Mechanisms, seasonal patterns and trends[J]. Cold Regions Science and Technology, 2018, 155:58-68. DOI: 10.1016/j.coldregions.2018.06.014
doi: 10.1016/j.coldregions.2018.06.014 |
[23] |
Yang D, Wang X, Xu J, et al. Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China[J]. Environmental Pollution, 2018, 241:475-483. DOI: 10.1016/j.envpol.2018.05.043
doi: 10.1016/j.envpol.2018.05.043 |
[24] |
Lin G, Fu J, Jiang D, et al. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China[J]. International Journal of Environmental Research and Public Health, 2013, 11(1):173-186. DOI: 10.3390/ijerph110100173
doi: 10.3390/ijerph110100173 |
[25] |
Yang D, Chen Y, Miao C, et al. Spatiotemporal variation of PM2.5 concentrations and its relationship to urbanization in the Yangtze River Delta region, China[J]. Atmospheric Pollution Research, 2019, 11(3):491-498. DOI: 10.1016/j.apr.2019.11.021
doi: 10.1016/j.apr.2019.11.021 |
[26] |
Hao Y, Liu Y. The influential factors of urban PM2.5 concentrations in China: A Spatial Econometric Analysis[J]. Journal of Cleaner Production, 2015(6):1-33. DOI: 10.1016/j.jclepro.2015.05.005
doi: 10.1016/j.jclepro.2015.05.005 |
[27] |
Xu W, Sun J, Liu Y, et al. Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005-2016[J]. Journal of Environmental Management, 2019, 245(163):66-75. DOI: 10.1016/j.jenvman.2019.05.041
doi: 10.1016/j.jenvman.2019.05.041 |
[28] | 庄大方, 刘纪远. 中国土地利用程度的区域分异模型研究[J]. 自然资源学报, 1997, 12(2):105-111. |
[ Zhuang D F, Liu J Y. Study on the model of regional differentiation of land use degree in China[J]. Journal of Natural Resources, 1997, 12(2):105-111. ] DOI: 10.1007/s11769-997-0002-4
doi: 10.1007/s11769-997-0002-4 |
|
[29] |
Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 2013, 100:172-182. DOI: 10.1016/j.gloplacha.2012.10.014
doi: 10.1016/j.gloplacha.2012.10.014 |
[30] |
Sen P K. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 1968, 63(324):1379-1389. DOI: 10.1080/01621459.1968.10480934
doi: 10.1080/01621459.1968.10480934 |
[31] |
Anselin L. Local indicators of spatial association-LISA[J]. Geographical Analysis, 1995, 27(2):93-115. DOI: 10.1111/j.1538-4632.1995.tb00338.
doi: 10.1111/j.1538-4632.1995.tb00338 |
[32] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010 |
[ Wang J M Xu C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134. ] DOI: 10.11821/dlxb201701010
doi: 10.11821/dlxb201701010 |
|
[33] |
Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 2014, 28(4). DOI: 10.1111/j.1538-4632.1996.tb00936.
doi: 10.1111/j.1538-4632.1996.tb00936 |
[34] | 覃文忠. 地理加权回归基本理论与应用研究[D]. 上海: 同济大学, 2007. |
[The basic theoretics and application research on geographically weighted regression[D]. Shanghai: Tongji University, 2007. ] | |
[35] | 臧振峰, 张凤英, 李永华,等. 我国主要粮产区PM2.5、PM10时空分布特征及影响因素--以河南省为例[J]. 自然资源学报, 2021, 36(5):1163-1175. |
[ Spatio-temporal distribution and affecting factors of PM2.5 and PM10 in major grain producing areas in China: A case study of Henan province[J]. Journal of Natural Resources, 2021, 36(5):1163-1175. ] DOI: 10.31497/zrzyxb.20210506
doi: 10.31497/zrzyxb.20210506 |
|
[36] | 郑菊花, 申伟宁. 黄河中下游地区空气质量溢出效应与驱动因素[J]. 统计与决策, 2021, 37(14):66-69. |
[ Zheng J H, Shen W N. Spillover effects and driving factors of air quality in the middle and lower Reaches of the Yellow River[J]. Statistics and Decision, 2021, 37(14):66-69. ] DOI: 10.13546/j.cnki.tjyjc.2021.14.015
doi: 10.13546/j.cnki.tjyjc.2021.14.015 |
|
[37] | 程昌秀, 沈石, 李强坤. 黄河流域人地系统研究的大数据支撑与方法探索[J]. 中国科学基金, 2021, 35(4):529-536. |
[ Chang C X, Shen S, Li Q K. Big data support and method exploration about natural and human systems research in the Yellow River Basin[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(4):529-536. ] DOI: 10.16262/j.cnki.1000-8217.2021.04.005
doi: 10.16262/j.cnki.1000-8217.2021.04.005 |
|
[38] | 马歆, 和舒敏, 黄婷婷,等. 城市用地扩张的时空格局特征及驱动因素分析--以中原城市群为例[J]. 生态经济, 2020, 36(3):105-112. |
[ Ma X, He S M, Huang T T, et al. Analysis of spatial-temporal pattern characteristics and driving factors of urban land expansion: Taking central plains city cluster as an example[J]. Ecological Economy, 2020, 36(3):105-112. ] | |
[39] |
Georgiev E, Mihaylov E. Economic growth and the environment: reassessing the environmental Kuznets Curve for air pollution emissions in OECD countries[J]. Letters in Spatial and Resource Sciences, 2015, 8(1):29-47. DOI: 10.1007/s12076-014-0114-2
doi: 10.1007/s12076-014-0114-2 |
[40] |
Liu H, Fang C, Zhang X, et al. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach[J]. Journal of Cleaner Production, 2017, 165:323-333. DOI: 10.1016/j.jclepro.2017.07.127
doi: 10.1016/j.jclepro.2017.07.127 |
[41] | 黄小刚, 邵天杰, 赵景波,等. 汾渭平原PM2.5浓度的影响因素及空间溢出效应[J]. 中国环境科学, 2019, 39(8):3539-3548. |
[ Huang X G, Shao T J, Zhao J B, et al. Influence factors and spillover effect of PM2.5concentration on Fen-wei Plain[J]. China Environmental Science, 2019, 39(8):3539-3548. ] DOI: 10.3969/j.issn.1000-6923.2019.08.049
doi: 10.3969/j.issn.1000-6923.2019.08.049 |
|
[42] |
Stone B. Urban sprawl and air quality in large US cities[J]. Journal of Environmental Management, 2008, 86(4):688-698. DOI: 10.1016/j.jenvman.2006.12.034
doi: 10.1016/j.jenvman.2006.12.034 |
[43] | 王胜杰, 解淑艳, 王军霞,等. 2016-2019年汾渭平原城市空气质量状况分析[J]. 中国环境监测, 2020, 36(6):57-65. |
[ Wang S J, Xie S Y,Wang J X. Analysis of air quality in Fenwei Plain from 2016 to 2019[J]. Environmental Monitoring in China, 2020, 36(6):57-65. ] | |
[44] | 赵柄鉴, 文传浩, 唐中林. 黄河生态经济带空气质量时空分异研究(2015-2018)[J]. 长江流域资源与环境,2021, 30(4):900-914. |
[ Zhao B J, Wen C H, Tang Z L.Spatiotemporal variation of air quality in the Yellow River Eco-Economic Belt (2015-2018)[J]. Environment in the Yangtze Basin, 2021, 30(4):900-914. ] | |
[45] |
程昌秀, 史培军, 宋长青,等. 地理大数据为地理复杂性研究提供新机遇[J]. 地理学报, 2018, 73(8):1397-1406.
doi: 10.11821/dlxb201808001 |
[ Geographic big-data: A new opportunity for geography complexity study[J]. Acta Geographica Sinica, 2018, 73(8):1397-1406. ] DOI: 10.11821/dlxb201808001
doi: 10.11821/dlxb201808001 |
|
[46] |
Zhang Q, Zheng Y, Tong D, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(49):24463-24469. DOI: 10.1073/pnas.1907956116
doi: 10.1073/pnas.1907956116 |
[47] |
Zhang D L, Shou Y X, Dickerson R R. Upstream urbanization exacerbates urban heat island effects[J]. Geophysical Research Letters, 2009, 36(24):1-5. DOI: 10.1029/2009GL041082
doi: 10.1029/2009GL041082 |
[1] | 李俊明, 周佳卉, 李杰, 高佳源. 基于贝叶斯统计的黄河流域生态文明与共同富裕的时空协同演进研究[J]. 地球信息科学学报, 2023, 25(4): 766-782. |
[2] | 尹文萍, 张鑫, 谢菲, 樊辉, 陈飞. 野象北移事件舆情演化及其影响机制[J]. 地球信息科学学报, 2023, 25(4): 794-808. |
[3] | 谭德明, 饶佳艺. 深圳市都市型滨水空间活力影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 809-822. |
[4] | 吴子豪, 刘耀林, 冯向阳, 陈奕云, 闫庆武. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573-587. |
[5] | 王林林, 范晓梅. 基于BFAST算法和多源数据的黄河三角洲耕地退化演变及驱动因素分析[J]. 地球信息科学学报, 2023, 25(11): 2218-2231. |
[6] | 李云帆, 李彩霞, 贾翔, 吴晶, 张晓丽, 梅晓丽, 朱若柠, 王冬. 乌梁素海流域生态脆弱性时空变化及其成因分析[J]. 地球信息科学学报, 2023, 25(10): 2039-2054. |
[7] | 张歆越, 高晓路, 柴琪, 宋敦江. 中国地级城市建成区蓝绿空间时空格局及其气候影响因素分析[J]. 地球信息科学学报, 2023, 25(1): 190-207. |
[8] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[9] | 张轲, 魏伟, 周婕, 尹力, 夏俊楠. 三江源地区“三区空间”时空演化及驱动机制分析(1992―2020年)[J]. 地球信息科学学报, 2022, 24(9): 1755-1770. |
[10] | 侯玥, 徐成东, 刘伟, 殷倩. 气候变化情景下淮河上游流域氮排放预测研究[J]. 地球信息科学学报, 2022, 24(8): 1558-1574. |
[11] | 卢奕帆, 梁颖然, 卢思言, 肖钺, 何小钰, 林锦耀. 结合“珞珈一号”夜间灯光与城市功能分区的广州市碳排放空间分布模拟及其影响因素分析[J]. 地球信息科学学报, 2022, 24(6): 1176-1188. |
[12] | 张永凯, 杨春月, 张晚军, 毕潇梅. 黄河流域人口预期寿命的时空演化及影响因素分析[J]. 地球信息科学学报, 2022, 24(5): 902-913. |
[13] | 郭金函, 马子迎, 边经卫, 江楚钶. 基于街景图像的厦门本岛环境特征对住宅价格的影响研究[J]. 地球信息科学学报, 2022, 24(11): 2128-2140. |
[14] | 梁立锋, 曾文霞, 宋悦祥, 邵振峰, 刘秀娟. 顾及人群集聚和情绪强度的城市综合活力评价及影响因素[J]. 地球信息科学学报, 2022, 24(10): 1854-1866. |
[15] | 桂志鹏, 梅宇翱, 吴华意, 李锐. 顾及POI人口吸引力异质性的城市人口空间化方法[J]. 地球信息科学学报, 2022, 24(10): 1883-1897. |
|