地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (1): 127-140.doi: 10.12082/dqxxkx.2022.210577
郭长庆1(), 迟文峰2, 匡文慧1,3, 窦银银1,*(
), 傅舒婧4, 雷梅3,5
收稿日期:
2021-09-25
修回日期:
2021-11-12
出版日期:
2022-01-25
发布日期:
2022-03-25
通讯作者:
* 窦银银(1986—),女,山东高唐人,博士,助理研究员,主要从事城市生态遥感研究。E-mail: douyinyin@igsnrr.ac.cn作者简介:
郭长庆(1994—),男,山东济宁人,硕士生,主要从事生态环境遥感研究。E-mail: guocq@igsnrr.ac.cn
基金资助:
GUO Changqing1(), CHI Wenfeng2, KUANG Wenhui1,3, DOU Yinyin1,*(
), FU Shujing4, LEL Mei3,5
Received:
2021-09-25
Revised:
2021-11-12
Online:
2022-01-25
Published:
2022-03-25
Contact:
DOU Yinyin
Supported by:
摘要:
由于当前缺乏有效的能源开采和加工场地精细化遥感探测方法和高精度的数据产品,全国尺度的能源开采和加工场地时空分布规律的认识仍显不足。本研究基于高分辨率遥感影像、土地利用/覆盖数据、网络爬虫数据、OSM地图数据和环境专题数据等信息,发展了基于多源数据融合和专家知识参与获取的能源开采和加工场地遥感识别和精细化制图的技术方法,研发了1990、2000、2010和2020年共4期的中国能源开采和加工场地分布数据产品及2010—2020年场地植被恢复信息数据产品,作为中国土地利用/覆盖变化数据的组成部分(CLUD-Mining)。CLUD-Mining具有较高的质量和可靠性,数据产品平均精度为91.75%;中国能源开采和加工场地开发建设的面积呈现先增长后减少的发展趋势,1990—2010年,面积增长速度从55.22 km2/a上升到95.51 km2/a,而2010—2020年呈现负增长,平均每年减少27.28 km2;此外,2010—2020年场地植被恢复面积达746.76 km2,主要集中在华北区和西南区;中国能源开采和加工场地分布格局逐渐由东部地区向西部地区转移。本研究对提升中国能源开采和加工场地时空分布特征的认识具有重要意义,可为场地污染治理和生态修复提供重要的数据基础。
郭长庆, 迟文峰, 匡文慧, 窦银银, 傅舒婧, 雷梅. 1990—2020年中国能源开采和加工场地多源数据综合制图与时空变化分析[J]. 地球信息科学学报, 2022, 24(1): 127-140.DOI:10.12082/dqxxkx.2022.210577
GUO Changqing, CHI Wenfeng, KUANG Wenhui, DOU Yinyin, FU Shujing, LEL Mei. Mapping and Spatio-temporal Changes Analysis of Energy Mining and Producing Sites in China Using Multi-source Data from 1990 to 2020[J]. Journal of Geo-information Science, 2022, 24(1): 127-140.DOI:10.12082/dqxxkx.2022.210577
表1
数据源列表
数据类型 | 数据源名称 | 时间/年份 | 分辨率 | 数据格式 | 数据来源 |
---|---|---|---|---|---|
高分辨率遥感影像 | GF-2影像数据 | 2016 | 1 m | 栅格 | 中国科学院遥感与数字地球研究所( |
Google Earth影像 数据 | 1990—2020 | 0.5 m/1 m/ 2 m | 栅格 | http://google-earth.en.softonic.com/ | |
土地利用/覆盖数据 | 中国土地利用/覆盖数据集(CLUD) | 1990—2020 | - | 矢量 | 中国科学院地理科学与资源研究所( |
网络爬虫数据 | 网络爬虫数据 | 1990—2020 | - | 表格 | 网络爬虫技术/全国排污许可证管理信息平台(公开端)( |
OSM地图数据 | OSM地图数据 | 2020 | - | 矢量 | Open Street Map( |
环境专题数据 | 调研场地信息数据 | 2018—2020 | - | 表格 | 实地调研获取 |
Landsat NDVI数据 | 2010—2020 | 30 m | 栅格 | ||
基础地理数据 | 行政区划数据 | 2018 | 1:100万 | 矢量 | 国家基础地理信息中心(http://www.ngcc.cn/) |
表2
1990—2020年中国各地理分区能源场地及其植被恢复信息数据产品精度验证信息
地理分区 | 指标 | 1990年 | 2000年 | 2010年 | 2020年 | 2010—2020年 植被恢复信息 | 平均精度∗/% |
---|---|---|---|---|---|---|---|
华北区 | 总采样数/个 | 286 | 398 | 377 | 390 | 506 | 91.82 |
正确数/个 | 255 | 360 | 344 | 376 | 464 | ||
错误数/个 | 31 | 38 | 33 | 14 | 42 | ||
产品精度/% | 89.16 | 90.45 | 91.25 | 96.41 | 91.70 | ||
东北区 | 总采样数/个 | 123 | 188 | 157 | 139 | 201 | 91.82 |
正确数/个 | 111 | 170 | 145 | 131 | 186 | ||
错误数/个 | 12 | 18 | 12 | 8 | 15 | ||
产品精度/% | 90.24 | 90.43 | 92.36 | 94.24 | 92.54 | ||
西北区 | 总采样数/个 | 138 | 182 | 213 | 239 | 124 | 91.30 |
正确数/个 | 127 | 165 | 190 | 223 | 117 | ||
错误数/个 | 11 | 17 | 23 | 16 | 7 | ||
产品精度/% | 92.03 | 90.66 | 89.20 | 93.31 | 94.35 | ||
东南区 | 总采样数/个 | 161 | 180 | 185 | 176 | 259 | 90.78 |
正确数/个 | 140 | 163 | 171 | 164 | 228 | ||
错误数/个 | 21 | 17 | 14 | 12 | 31 | ||
产品精度/% | 86.96 | 90.56 | 92.43 | 93.18 | 88.03 | ||
西南区 | 总采样数/个 | 140 | 183 | 208 | 168 | 264 | 93.11 |
正确数/个 | 134 | 161 | 197 | 158 | 230 | ||
错误数/个 | 6 | 22 | 11 | 10 | 34 | ||
产品精度/% | 95.71 | 87.98 | 94.71 | 94.05 | 87.12 | ||
青藏高原区 | 总采样数/个 | 21 | 26 | 33 | 30 | 25 | 91.76 |
正确数/个 | 19 | 24 | 30 | 28 | 22 | ||
错误数/个 | 2 | 2 | 3 | 2 | 3 | ||
产品精度/% | 90.48 | 92.31 | 90.91 | 93.33 | 88.00 | ||
中国大陆 | 总采样数/个 | 869 | 1157 | 1173 | 1142 | 1379 | 91.75 |
正确数/个 | 786 | 1043 | 1077 | 1080 | 1247 | ||
错误数/个 | 83 | 114 | 96 | 62 | 132 | ||
产品精度/% | 90.45 | 90.15 | 91.82 | 94.57 | 90.43 |
[1] |
Zhang W Q, Zhao F, Wang Y T. An evaluation of the comprehensive development capacity: energy-based cities in China[J]. Energy Procedia, 2016, 104:509-514. DOI: 10.1016/j.egypro.2016.12.086
doi: 10.1016/j.egypro.2016.12.086 |
[2] |
Peng J C, Xiao J Z, Zhang L, et al. The impact of China's Atmosphere Ten Articles' policy on total factor productivity of energy exploitation: empirical evidence using synthetic control methods[J]. Resources Policy, 2020, 65:101544. DOI: 10.1016/j.resourpol.2019.101544
doi: 10.1016/j.resourpol.2019.101544 |
[3] |
Erickson P, Lazarus M, Piggot G. Limiting fossil fuel production as the next big step in climate policy[J]. Nature Climate Change, 2018, 8(12):1037-1043. DOI: 10.1038/s41558-018-0337-0
doi: 10.1038/s41558-018-0337-0 |
[4] |
Rogelj J, Popp A, Calvin K V, et al. Scenarios towards limiting global mean temperature increase below 1.5℃[J]. Nature Climate Change, 2018, 8(4):325-332. DOI: 10.1038/s41558-018-0091-3
doi: 10.1038/s41558-018-0091-3 |
[5] | 生态环境部环境规划院. 大气污染防治行动计划[R]. 北京: 人民出版社, 2013. |
[ Chinese Academy of Environmental Planning. Action plan of prevention and control of air pollution[R]. Beijing: People Publishing House, 2013. ] | |
[6] | 生态环境部环境规划院. 水污染防治行动计划[R]. 北京: 人民出版社, 2015. |
[ Chinese Academy of Environmental Planning. Action plan of prevention and control of water pollution[R]. Beijing: People Publishing House, 2015. ] | |
[7] | 生态环境部环境规划院. 水污染防治行动计划[R]. 北京: 人民出版社, 2016. |
[ Chinese Academy of Environmental Planning. Action plan of prevention and control of soil pollution[R]. Beijing: People Publishing House, 2016. ] | |
[8] |
Kuenzer C, Bachmann M, Mueller A, et al. Partial unmixing as a tool for single surface class detection and time series analysis[J]. International Journal of Remote Sensing, 2008, 29(11):3233-3255. DOI: 10.1080/01431160701469107
doi: 10.1080/01431160701469107 |
[9] |
Demirel N, Emil M K, Duzgun H S. Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery[J]. International Journal of Coal Geology, 2011, 86(1):3-11. DOI: 10.1016/j.coal.2010.11.010
doi: 10.1016/j.coal.2010.11.010 |
[10] | 卞正富, 张燕平. 徐州煤矿区土地利用格局演变分析[J]. 地理学报, 2006, 61(4):349-358. |
[ Bian Z F, Zhang Y P. Land use changes in Xuzhou coal mining area[J]. Acta Geographica Sinica, 2006, 61(4):349-358. ] DOI: 10.3321/j.issn:0375-5444.2006.04.002
doi: 10.3321/j.issn:0375-5444.2006.04.002 |
|
[11] |
Ang M L E, Arts D, Crawford D, et al. Socio-environmental land cover time-series analysis of mining landscapes using Google Earth Engine and web-based mapping[J]. Remote Sensing Applications: Society and Environment, 2021, 21:100458. DOI: 10.1016/j.rsase.2020.100458
doi: 10.1016/j.rsase.2020.100458 |
[12] |
Nyamekye C, Ghansah B, Agyapong E, et al. Mapping changes in Artisanal and Small-scale Mining (ASM) landscape using machine and deep learning algorithms: A proxy evaluation of the 2017 ban on ASM in Ghana[J]. Environmental Challenges, 2021, 3:100053. DOI: 10.1016/j.envc.2021.100053
doi: 10.1016/j.envc.2021.100053 |
[13] |
Zhang C, Kuang W H, Wu J G, et al. Industrial land expansion in rural China threatens environmental securities[J]. Frontiers of Environmental Science & Engineering, 2021, 15(2):1-13. DOI: 10.1007/s11783-020-1321-2
doi: 10.1007/s11783-020-1321-2 |
[14] | 杜青松, 李国玉, 彭万林, 等. 基于遥感技术的高寒矿区土地利用变化研究[J]. 环境科学与技术, 2020, 43(12):185-194. |
[ Du Q S, Li G Y, Peng W L, et al. Land use changes in high cold-altitude mining area based on remote sensing technology[J]. Environmental Science & Technology, 2020, 43(12):185-194. ] DOI: 10.19672/j.cnki.1003-6504.2020.12.025
doi: 10.19672/j.cnki.1003-6504.2020.12.025 |
|
[15] | 侯飞, 胡召玲, 成晨. 全极化SAR图像的煤矿区土地覆盖信息分层提取方法研究[J]. 中国生态农业学报, 2013, 21(9):1142-1148. |
[ Hou F, Hu Z L, Cheng C. Hierarchical extraction of land cover information from fully polarimetric SAR image of coal mining areas[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9):1142-1148. ] DOI: 10.3724/SP.J.1011.2013.01142
doi: 10.3724/SP.J.1011.2013.01142 |
|
[16] | 宋亚婷, 江东, 黄耀欢, 等. 基于面向对象方法的露天煤矿用地类型提取优先级分析[J]. 遥感技术与应用, 2016, 31(3):572-579. |
[ Song Y T, Jiang D, Huang Y H, et al. Research on the priority of the land use types extraction of opencast mine area based on object-oriented classification[J]. Remote Sensing Technology and Application, 2016, 31(3):572-579. ] DOI: 10.11873/j.issn.l004-0323.2016.3.0572
doi: 10.11873/j.issn.l004-0323.2016.3.0572 |
|
[17] |
Xu J M, Zhu W B, Xu J L, et al. High-intensity longwall mining-induced ground subsidence in Shendong coalfield, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 141:104730. DOI: 10.1016/j.ijrmms.2021.104730
doi: 10.1016/j.ijrmms.2021.104730 |
[18] |
Madasa A, Orimoloye I R, Ololade O O. Application of geospatial indices for mapping land cover/use change detection in a mining area[J]. Journal of African Earth Sciences, 2021, 175:104108. DOI: 10.1016/j.jafrearsci.2021.104108
doi: 10.1016/j.jafrearsci.2021.104108 |
[19] |
Li J, Liang J X, Wu Y, et al. Quantitative evaluation of ecological cumulative effect in mining area using a pixel-based time series model of ecosystem service value[J]. Ecological Indicators, 2021, 120:106873. DOI: 10.1016/j.ecolind.2020.106873
doi: 10.1016/j.ecolind.2020.106873 |
[20] | 毕如田, 白中科, 李华, 等. 大型露天煤矿区土地扰动的时空变化[J]. 应用生态学报, 2007, 18(8):1908-1912. |
[ Bi R T, Bai Z K, Li H, et al. Spatio temproal variation of land disturbance on large opencast coal mine area[J]. Chinese Journal of Applied Ecology, 2007, 18(8):1908-1912. ] DOI: 10.13287/j.1001-9332.2007.0296
doi: 10.13287/j.1001-9332.2007.0296 |
|
[21] | 王行风, 韩宝平, 汪云甲, 等. 基于遥感的煤矿区景观生态分类[J]. 辽宁工程技术大学学报, 2007, 26(5):776-779. |
[ Wang X F, Han B P, Wang Y J, et al. Landscape eco-classification in mining area based on RS[J]. Journal of Liaoning Technical University, 2007, 26(5):776-779. ] DOI: 10.3969/j.issn.1008-0562.2007.05.041
doi: 10.3969/j.issn.1008-0562.2007.05.041 |
|
[22] | 杨庚, 张振佳, 曹银贵, 等. 晋北大型露天矿区景观生态风险时空异质性[J]. 生态学杂志, 2021, 40(1):187-198. |
[ Yang G, Zhang Z J, Cao Y G, et al. Spatial-temporal heterogeneity of landscape ecological risk of large-scale open-pit mining area in north Shanxi[J]. Chinese Journal of Ecology, 2021, 40(1):187-198. ] DOI: 10.13292/j.1000-4890.202101.003
doi: 10.13292/j.1000-4890.202101.003 |
|
[23] |
Kuang W H, Liu J Y, Tian H Q, et al. Cropland redistribution to marginal lands undermines environmental sustainability[J]. National Science Review, 2021, https://doi.org/10.1093/nsr/nwab091. DOI: 10.1093/nsr/nwab091
doi: 10.1093/nsr/nwab091 |
[24] |
Kuang W H, Liu J Y, Dong J W, et al. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: a CLUD-based analysis of their trajectories, patterns, and drivers[J]. Landscape and Urban Planning, 2016, 145:21-33. DOI: 10.1016/j.landurbplan.2015.10.001
doi: 10.1016/j.landurbplan.2015.10.001 |
[25] |
Ning J, Liu J Y, Kuang W H, et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015[J]. Journal of Geographical Sciences, 2018, 28(5):547-562. DOI: 10.11821/dlxb201805001
doi: 10.11821/dlxb201805001 |
[26] | 谢克武. 大数据环境下基于python的网络爬虫技术[J]. 电子制作, 2017, 328(9):44-45. |
[ Xie K W. Python-based web crawler technology in a big data environment[J]. Practical Electronics, 2017, 328(9):44-45. ] DOI: 10.16589/j.cnki.cn11-3571/tn.2017.09.017
doi: 10.16589/j.cnki.cn11-3571/tn.2017.09.017 |
|
[27] |
Roy D P, Kovalskyy V, Zhang H K, et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity[J]. Remote Sensing of Environment, 2016, 185:57-70. DOI: 10.1016/j.rse.2015.12.024
doi: 10.1016/j.rse.2015.12.024 |
[28] |
Robinson N P, Allred B W, Jones M O, et al. A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States[J]. Remote Sensing, 2017, 9(8):863. DOI: 10.3390/rs9080863
doi: 10.3390/rs9080863 |
[29] |
金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5):961-974.
doi: 10.11821/dlxb202005006 |
[ Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J]. Acta Geographica Sinica, 2020, 75(5):961-974. ] DOI: 10.11821/dlxb202005006
doi: 10.11821/dlxb202005006 |
|
[30] | 骆剑承, 胡晓东, 吴田军, 等. 高分遥感驱动的精准土地利用与土地覆盖变化信息智能计算模型与方法研究[J]. 遥感学报, 2021, 25(7):1351-1373. |
[ Luo J C, Hu X D, Wu T J, et al. Research on intelligent calculation model and method of precision land use/cover change information driven by high-resolution remote sensing[J]. National Remote Sensing Bulletin, 2021, 25(7):1351-1373. ] DOI: 1007-4619(2021)07-1351-23
doi: 1007-4619(2021)07-1351-23 |
|
[31] |
Wu C Y, Huang X J, Chen B W. Telecoupling mechanism of urban land expansion based on transportation accessibility: a case study of transitional Yangtze River economic Belt, China[J]. Land Use Policy, 2020, 96:104687. DOI: 10.1016/j.landusepol.2020.104687
doi: 10.1016/j.landusepol.2020.104687 |
[32] |
Kuang W H. National urban land-use/cover change since the beginning of the 21st century and its policy implications in China[J]. Land Use Policy, 2020, 97:104747. DOI: 10.1016/j.landusepol.2020.104747
doi: 10.1016/j.landusepol.2020.104747 |
[33] | 刘福江, 吴信才, 郭艳, 等. 招远金矿区植被异常及遥感找矿意义[J]. 吉林大学学报(地球科学版), 2007, 37(3):444-449+456. |
[ Liu F J, Wu X C, Guo Y, et al. Vegetation anomalies of the Zhaoyuan gold deposits, Shandong Province and its significance in remote sensing exploration[J]. Journal of Jilin University(Earth Science Edition), 2007, 37(3):444-449,456. ] DOI: 10.13278/j.cnki.jjuese.2007.03.005
doi: 10.13278/j.cnki.jjuese.2007.03.005 |
|
[34] |
Yu H Y, Cheng G, Ge X S, et al. Object oriented land cover classification using ALS and GeoEye imagery over mining area[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3):733-737. DOI: 10.1016/S1003-6326(12)61671-9
doi: 10.1016/S1003-6326(12)61671-9 |
[35] |
黄丹, 刘庆生, 刘高焕, 等. 面向对象的煤矸石堆场SPOT-5影像识别[J]. 地球信息科学学报, 2015, 17(3):369-377.
doi: 10.3724/SP.J.1047.2015.00369 |
[ Huang D, Liu Q S, Liu G H, et al. Coal gangue yards information extraction using object-oriented method based on SPOT-5 remote sensing images[J]. Journal of Geo-information Science, 2015, 17(3):369-377. ] DOI: 10.3724/SP.J.1047.2015.00369
doi: 10.3724/SP.J.1047.2015.00369 |
|
[36] |
Tang L, Werner T T, Xie H P, et al. A global-scale spatial assessment and geodatabase of mine areas[J]. Global and Planetary Change, 2021, 204:103578. DOI: 10.1016/j.gloplacha.2021.103578
doi: 10.1016/j.gloplacha.2021.103578 |
[37] |
Abaidoo C A, Osei Jnr E M, Arko-Adjei A, et al. Monitoring the extent of reclamation of small scale mining areas using artificial neural networks[J]. Heliyon, 2019, 5(4):e01445. DOI: 10.1016/j.heliyon.2019.e01445
doi: 10.1016/j.heliyon.2019.e01445 |
[38] |
Kuang W H, Zhang S, Li X Y, et al. A 30 m resolution dataset of China's urban impervious surface area and green space, 2000-2018[J]. Earth System Science Data, 2021, 13(1):63-82. DOI: 10.5194/essd-13-63-2021
doi: 10.5194/essd-13-63-2021 |
[39] | 李晨毓, 井哲帆, 何晓波. 1986—2015年长江源各拉丹冬地区冰川变化遥感监测研究[J]. 冰川冻土, 2021, 43(2):405-416. |
[ Li C Y, Jing Z F, He X B. Remote sensing monitoring of glacier variation in Geladandong, source regions of the Yangtze River from 1986 to 2015[J]. Journal of Glaciology and Geocryology, 2021, 43(2):405-416. ] DOI: 10.7522/j.issn.1000-0240.2021.0014
doi: 10.7522/j.issn.1000-0240.2021.0014 |
|
[40] |
Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010, 114(1):168-182. DOI: 10.1016/j.rse.2009.08.016
doi: 10.1016/j.rse.2009.08.016 |
[41] | Bontemps S, Defourny P, Van Bogaert E, et al. Globcover 2009 products description and validation report[R]. ESA: Paris, France, 2011-02-18. |
[42] |
Chen J, Chen J, Liao A P, et al. Global land cover mapping at 30 m resolution: A POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103:7-27. DOI: 10.1016/j.isprsjprs.2014.09.002
doi: 10.1016/j.isprsjprs.2014.09.002 |
[43] |
Gong P, Liu H, Zhang M N, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373. DOI: 10.1016/j.scib.2019.03.002
doi: 10.1016/j.scib.2019.03.002 |
[44] |
Ma B, Lu C X, Zhang L, et al. The temporal and spatial patterns and potential evaluation of China's energy resources development[J]. Journal of Geographical Sciences, 2010, 20(3):347-356. DOI: 10.1007/s11442-010-0347-y
doi: 10.1007/s11442-010-0347-y |
[45] |
Li Q, Ren Z Y. Energy production and consumption prediction and their response to environment based on coupling model in China[J]. Journal of Geographical Sciences, 2012, 22(1):93-109. DOI: 10.1007/s11442-012-0914-5
doi: 10.1007/s11442-012-0914-5 |
[46] |
Wang Q, Xu L L, Li N, et al. The evolution of the spatial-temporal patterns of global energy security since the 1990s[J]. Journal of Geographical Sciences, 2019, 29(8):1245-1260. DOI: 10.1007/s11442-019-1657-3
doi: 10.1007/s11442-019-1657-3 |
[47] |
王文涛, 刘燕华, 于宏源. 全球气候变化与能源安全的地缘政治[J]. 地理学报, 2014, 69(9):1259-1267.
doi: 10.11821/dlxb201409002 |
[ Wang W T, Liu Y H, Yu H Y. The geopolitical pattern of global climate change and energy security issues[J]. Acta Geographica Sinica, 2014, 69(9):1259-1267. ] DOI: 10.11821/dlxb201409002
doi: 10.11821/dlxb201409002 |
|
[48] |
陈明星, 先乐, 王朋岭, 等. 气候变化与多维度可持续城市化[J]. 地理学报, 2021, 76(8):1895-1909.
doi: 10.11821/dlxb202108006 |
[ Chen M X, Xian L, Wang P L, et al. Climate change and multi-dimensional sustainable urbanization[J]. Acta Geographica Sinica, 2021, 76(8):1895-1909. ] DOI: 10.11821/dlxb202108006
doi: 10.11821/dlxb202108006 |
|
[49] |
Wang B, Wang Q, Wei Y M, et al. Role of renewable energy in China's energy security and climate change mitigation: an index decomposition analysis[J]. Renewable and Sustainable Energy Reviews, 2018, 90:187-194. DOI: 10.1016/j.rser.2018.03.012
doi: 10.1016/j.rser.2018.03.012 |
[1] | 范兰馨, 吴艳红, 迟皓婧, 郑思齐, 闫家恒, 任永康, 孙忠华. 暖湿化下西北地区水体变化趋势遥感监测[J]. 地球信息科学学报, 2023, 25(9): 1842-1854. |
[2] | 邢子瑶, 董芯蕊, 昝糈莉, 杨帅, 黄梓焓, 刘哲, 张晓东. 融合VGI和遥感等多源数据的洪涝范围提取与模拟方法[J]. 地球信息科学学报, 2023, 25(9): 1869-1881. |
[3] | 黄高爽, 周杨, 胡校飞, 赵璐颖, 张呈龙. 图像地理定位研究进展[J]. 地球信息科学学报, 2023, 25(7): 1336-1362. |
[4] | 潘佳乐, 信睿. COVID-19疫情前后北美五大湖航运网络多尺度时空变化及影响因素研究[J]. 地球信息科学学报, 2023, 25(7): 1481-1499. |
[5] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[6] | 万江琴, 费腾. 基于街景图像的“三生空间”识别方法研究[J]. 地球信息科学学报, 2023, 25(4): 838-851. |
[7] | 刘垚明, 李宛静, 张修远, 张宇恒, 李然, 周琪. 基于多源开放数据的中国农村可达指数评估[J]. 地球信息科学学报, 2023, 25(4): 783-793. |
[8] | 谭德明, 饶佳艺. 深圳市都市型滨水空间活力影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 809-822. |
[9] | 徐繁树, 王保云, 韩俊. 一种沟谷型潜在泥石流危险性评价方法:基于多源数据融合的卷积神经网络[J]. 地球信息科学学报, 2023, 25(3): 588-605. |
[10] | 谢昭颖, 沈润平, 黄安奇, 邢雅洁, 王云宇, 刘晓利. 基于改进S-G滤波和非监督分类局部核回归的中国LAI时序数据融合研究[J]. 地球信息科学学报, 2023, 25(11): 2249-2267. |
[11] | 李云帆, 李彩霞, 贾翔, 吴晶, 张晓丽, 梅晓丽, 朱若柠, 王冬. 乌梁素海流域生态脆弱性时空变化及其成因分析[J]. 地球信息科学学报, 2023, 25(10): 2039-2054. |
[12] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[13] | 闫兆进, 杨慧. 基于多源数据和船舶停留轨迹语义建模的港口目标识别[J]. 地球信息科学学报, 2022, 24(9): 1662-1675. |
[14] | 邹昕宸, 牟凤云, 王俊秀, 陈建坤, 田甜. 基于多源数据的长江经济带内河港口区位优势度评估[J]. 地球信息科学学报, 2022, 24(9): 1717-1729. |
[15] | 张轲, 魏伟, 周婕, 尹力, 夏俊楠. 三江源地区“三区空间”时空演化及驱动机制分析(1992―2020年)[J]. 地球信息科学学报, 2022, 24(9): 1755-1770. |
|