地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (10): 2004-2020.doi: 10.12082/dqxxkx.2022.210840
收稿日期:
2021-12-30
修回日期:
2022-02-28
出版日期:
2022-10-25
发布日期:
2022-12-25
作者简介:
李渊(1979—),男,湖北荆门人,教授,博导,主要从事旅游者时空行为、遗产空间感知与计算研究。E-mail: liyuan79@xmu.edu.cn
基金资助:
LI Yuan1,2,*(), GUO Jing1,2, CHEN Yiping2,3
Received:
2021-12-30
Revised:
2022-02-28
Online:
2022-10-25
Published:
2022-12-25
Contact:
LI Yuan
Supported by:
摘要:
用户生成内容(User Generated Content,UGC)作为感知旅游地物质空间的新型地理大数据,以使用者的视角描绘了旅游地的客观环境,是探索旅游目的地感知的重要途径。然而,传统的旅游研究对旅行摄影照片处理能力有限,深度学习图像语义分割技术的发展,为挖掘旅游者视觉行为模式,探索旅游地环境感知提供了有力支持。本研究提出了整合在线旅行照片大数据与问卷调查小数据的旅游者视觉行为模式与感知评估框架,并将其应用于鼓浪屿案例。首先将744条旅游轨迹,聚类为6类视觉行为模式,并可视化与时空分析;其次基于全卷积网络算法,量化22 507张旅行照片语义,探索不同视觉模式的旅游者关注要素的空间分异;最后通过照片语义与场景感知问卷调查的相关性分析和多重线性回归模型,评估旅游地整体视觉感知满意度,并提出相应的空间优化建议。研究表明:① 鼓浪屿旅游者视觉行为模式聚类为单点游、海岛风光游、环岛游、街巷空间游、遗产建筑游和全岛游6类;② 不同视觉行为模式的旅游者视觉兴趣区存在空间集聚现象,视觉空间转移遵循地理邻近效应;③ 相关性分析与模型结果表明,旅游者偏好空间开敞度较高的区域,感知满意度越低的区域摄影行为越少,是环境提升的重点;④ 出行时间和成本效率最大化、建成环境、心理环境与社会环境是影响旅游者视觉感知的主要因素。本研究延伸了人工智能技术在旅游者视觉感知研究中的应用,为旅游地空间优化提供参考。
李渊, 郭晶, 陈一平. 基于多源数据的旅游者视觉行为模式与感知评估方法[J]. 地球信息科学学报, 2022, 24(10): 2004-2020.DOI:10.12082/dqxxkx.2022.210840
LI Yuan, GUO Jing, CHEN Yiping. A New Approach for Tourists' Visual Behavior Patterns and Perception Evaluation based on Multi-source Data[J]. Journal of Geo-information Science, 2022, 24(10): 2004-2020.DOI:10.12082/dqxxkx.2022.210840
[1] | 白凯, 马耀峰, 游旭群. 基于旅游者行为研究的旅游感知和旅游认知概念[J]. 旅游科学, 2008(1):22-28. |
[ Bai K, Ma Y F, You X Q. Reflections on the Concepts of tourism perception and cognition based on Researchs of tourist behaviors[J]. Tourism Science, 2008, 22(1):22-28. ] DOI: 10.3969/j.issn.1006-575X.2008.01.004
doi: 10.3969/j.issn.1006-575X.2008.01.004 |
|
[2] |
Zhang F, Zhou B, Ratti C, et al. Discovering place-informative scenes and objects using social media photos[J]. Royal Society Open Science, 2019, 6(3):1-15. DOI: 10.10 98/rsos.181375
doi: 10.10 98/rsos.181375 |
[3] | 吴志才, 张凌媛, 郑钟强, 等. 旅游场域中古城旅游社区的空间生产研究——基于列斐伏尔的空间生产理论视角[J]. 旅游学刊, 2019, 34(12):86-97. |
[ Wu Z C, Zhang L Y, Zhang Z Q, et al. The production of space within the field of tourism: A case study of the tourism community of Chaozhou ancient city[J]. Tourism Tribune, 2019, 34(12):86-97. ] DOI: 10.19765/j.cnki.1002-5006.2019.12.011
doi: 10.19765/j.cnki.1002-5006.2019.12.011 |
|
[4] | 李渊, 杨璐, 高小涵. 鼓浪屿街道空间体验分析与提升策略[J]. 规划师, 2019, 35(14):24-31. |
[ Li Y, Yang L, Gao X H. Preference and spatial improvement strategies of street space of Gulangyu Island[J]. Planners, 2019, 35(14):24-31. ] DOI: CNKI:SUN:GHSI.0.2019-14-005
doi: CNKI:SUN:GHSI.0.2019-14 |
|
[5] | 张帆, 刘瑜. 街景影像——基于人工智能的方法与应用[J]. 遥感学报, 2021, 25(5):1043-1054. |
[ Zhang F, Liu Y. Street view imagery: Methods and applications based on artificial intelligence[J]. National Remote Sensing Bulletin, 2021, 25(5):1043-1054. ] DOI: 10.11834/jrs.20219341
doi: 10.11834/jrs.20219341 |
|
[6] | Chalfen R M. Photograph's role in tourism Some unexplored relationships[J]. Annals of Tourism Research, 1979,6(4):435-447. DOI:10.1016/0160- 7383(79)90006-9 |
[7] | Urry J. The Tourist Gaze: Leisure and Travel in Contemporary Society[C]. Sites of Memory, Sites of Mourning: the Great War in European Cultural History, 1990. |
[8] | 周功梅, 宋瑞, 刘倩倩. 旅游摄影:研究述评与展望[J]. 旅游学刊, 2020, 35(11):129-144. |
[ Zhou G M, Song R, Liu Q Q. Tourism photography: A literature review and analysis[J]. Tourism Tribune, 2020, 35(11):129-144. ] DOI: 10.19765/j.cnki.1002-5006.2020.11.014
doi: 10.19765/j.cnki.1002-5006.2020.11.014 |
|
[9] |
Haywood K M. Visitor-employed photography: An urban visit assessment[J]. Journal of Travel Research, 1990, 29(1): 25-29.
doi: 10.1177/004728759002900106 |
[10] |
Cederholm, Andersson E. The use of photo-elicitation in tourism research: Framing the backpacker experience[J]. Scandinavian Journal of Hospitality & Tourism, 2004, 4(3):225-241. DOI: 10.1177/004728759002900106
doi: 10.1177/004728759002900106 |
[11] |
Fairweather J R, Swaffield S R. Visitor experiences of Kaikoura, New Zealand: An interpretative study using photographs of landscapes and Q method[J]. Tourism Management, 2001, 22(3):219-228. DOI: 10.1016/S0261-5177(00)00061-3
doi: 10.1016/S0261-5177(00)00061-3 |
[12] |
Yao Y, Liang Z, Yuan Z, et al. A human-machine adversarial scoring framework for urban perception assessment using street-view images[J]. International Journal of Geographical Information Science, 2019, 33(12):2363-2384. DOI: 10.1080/13658816.2019.1643024
doi: 10.1080/13658816.2019.1643024 |
[13] |
Sheng F, Zhang Y, Shi C, et al. Xi'an tourism destination image analysis via deep learning[J]. Journal of Ambient Intelligence and Humanized Computing, 2020:1-10. DOI: 10.1007/s12652-020-02344-w
doi: 10.1007/s12652-020-02344-w |
[14] |
Miranda A S, Fan Z, Duarte F, et al. Desirable streets: Using deviations in pedestrian trajectories to measure the value of the built environment[J]. Computers Environment and Urban Systems, 2021, 86(3):1-17. DOI: 10.1016/j.compenvurbsys.2020.101563
doi: 10.1016/j.compenvurbsys.2020.101563 |
[15] |
Sohrabi B, Vanani I R, Nasiri N, et al. A predictive model of tourist destinations based on tourists' comments and interests using text analytics[J]. Tourism Management Perspectives, 2020, 35:1-12. DOI: 10.1016/j.tmp.2020.100710
doi: 10.1016/j.tmp.2020.100710 |
[16] |
Zanwar P, Kim J, Kim J, et al. Use of Connected Technologies to Assess Barriers and Stressors for Age and Disability-Friendly Communities[J]. Frontiers in Public Health, 2021, 9:1-9. DOI: 10.3389/fpubh.2021.578832
doi: 10.3389/fpubh.2021.578832 |
[17] |
Ren X, Li Y, Zhao J, et al. Tourism Growth Prediction Based on Deep Learning Approach[J]. Complexity, 2021, 2021: 1-10. DOI: 10.1155/2021/5531754
doi: 10.1155/2021/5531754 |
[18] |
Zhang K, Chen Y, Li C L. Discovering the tourists' behaviors and perceptions in a tourism destination by analyzing photos' visual content with a computer deep learning model: The case of Beijing[J]. Tourism Management, 2019, 75:595-608. DOI: 10.1016/j.tourman.2019.07.002
doi: 10.1016/j.tourman.2019.07.002 |
[19] |
Zhang X, Yang Y, Zhang Y, et al. Designing tourist experiences amidst air pollution: A spatial analytical approach using social media[J]. Annals of Tourism Research, 2020, 84:1-16. DOI: 10.1016/j.annals.2020.102999
doi: 10.1016/j.annals.2020.102999 |
[20] |
Li C, Kwok L, Xie K L, et al. Let photos speak: The effect of user-generated visual content on hotel review helpfulness[J]. Journal of Hospitality & Tourism Research, 2021. DOI: 10.1177/10963480211019113
doi: 10.1177/10963480211019113 |
[21] |
Lin M S, Liang Y, Xue J X, et al. Destination image through social media analytics and survey method[J]. International Journal of Contemporary Hospitality Management, 2021, 33(6):2219-2238. DOI:10.1108/ijchm-08-20 20-0861
doi: 10.1108/IJCHM-08-2020-0861 |
[22] |
Li J, Xu L, Tang L, et al. Big data in tourism research: A literature review[J]. Tourism Management, 2018, 68: 301-323. DOI: 10.1016/j.tourman.2018.03.009
doi: 10.1016/j.tourman.2018.03.009 |
[23] |
Zhang K, Chen Y, Lin Z. Mapping destination images and behavioral patterns from user-generated photos: a computer vision approach[J]. Asia Pacific Journal of Tourism Research, 2020, 25(11):1199-1214. DOI: 10.1080/10941665. 2020.1838586
doi: 10.1080/10941665. 2020.1838586 |
[24] |
He B, Liu K, Xue Z, et al. Spatial and temporal characteristics of urban tourism travel by taxi: A case study of Shenzhen[J]. Isprs International Journal of Geo-information, 2021, 10(7):1-13. DOI: 10.3390/ijgi10070445
doi: 10.3390/ijgi10070445 |
[25] |
Yao Q, Shi Y, Li H, et al. Understanding the tourists' spatio-temporal behavior using Open GPS trajectory data: A case study of Yuanmingyuan Park (Beijing, China)[J]. Sustainability, 2021, 13(1):1-13. DOI: 10.3390/su13010094
doi: 10.3390/su13010094 |
[26] |
Bao H, Ming D, Guo Y, et al. DFCNN-based semantic recognition of urban functional zones by integrating remote sensing data and POI data[J]. Remote Sensing, 2020, 12(7):1-26. DOI: 10.3390/rs12071088
doi: 10.3390/rs12071088 |
[27] |
Kang Y, Cho N, Yoon J, et al. Transfer learning of a deep learning model for exploring tourists' urban image using geotagged photos[J]. Isprs International Journal of Geo-Information, 2021, 10(3):1-20. DOI: 10.3390/ijgi10030137
doi: 10.3390/ijgi10030137 |
[28] |
Chen W, Xu Z, Zheng X, et al. Geo-tagged photo metadata processing method for Beijing inbound tourism flow[J]. Isprs International Journal of Geo-information, 2019, 8(12):1-15. DOI: 10.3390/ijgi8120556
doi: 10.3390/ijgi8120556 |
[29] |
Agusti D P I. Mapping tourist hot spots in African cities based on instagram images[J]. International Journal of Tourism Research, 2020, 22(5):617-626. DOI: 10.1002/jtr. 2360
doi: 10.1002/jtr. 2360 |
[30] |
Huang Y, Fei T, Kwan M-P, et al. GIS-based emotional computing: A review of quantitative approaches to measure the emotion layer of human-environment relationships[J]. Isprs International Journal of Geo-Information, 2020, 9(9):1-15. DOI: 10.3390/ijgi9090551
doi: 10.3390/ijgi9090551 |
[31] |
Zheng Y T, Zha Z J, Chua T S. Mining travel patterns from geotagged photos[J]. Acm Transactions on Intelligent Systems and Technology, 2012, 3(3):1-18. DOI: 10.1 145/2168752.2168770
doi: 10.1 145/2168752.2168770 |
[32] |
Gong Z, Ma Q, Kan C, et al. Classifying street spaces with street view images for a spatial indicator of urban functions[J]. Sustainability, 2019, 11(22):1-17. DOI: 10.33 90/su11226424
doi: 10.33 90/su11226424 |
[33] | 李渊, 刘嘉伟, 严泽幸, 等. 基于卫星定位导航数据的景区旅游者空间行为模式研究——以鼓浪屿为例[J]. 中国园林, 2019, 35(1):73-77. |
[ Li Y, Liu J W, Yan Z X, et al. Spatial behavior patterns of toupprists based on satellite navigation data: A case study of gulangyu[J]. Chinese Landscape Architecture, 2019, 35(1):73-77. ] DOI: 10.3969/j.issn.1000-6664.2019.01.014
doi: 10.3969/j.issn.1000-6664.2019.01.014 |
|
[34] |
Mou N X, Yuan R Z, Yang T F, et al. Exploring spatio-temporal changes of city inbound tourism flow: The case of Shanghai, China[J]. Tourism Management, 2020, 76: 14. DOI: 10.1016/j.tourman.2019.103955
doi: 10.1016/j.tourman.2019.103955 |
[35] |
Onder I. Classifying multi-destination trips in Austria with big data[J]. Tourism Management Perspectives, 2017, 21:54-58. DOI: 10.1016/j.tmp.2016.11.002
doi: 10.1016/j.tmp.2016.11.002 |
[36] |
Xiao X, Fang C, Lin H. Characterizing tourism destination image using photos' visual content[J]. Isprs International Journal of Geo-information, 2020, 9(12):730. DOI: 10.3390/ijgi9120730
doi: 10.3390/ijgi9120730 |
[37] |
Mikhailov S, Kashevnik A, Smirnov A, et al. tourist vehaviour analysis vased on digital pattern of life[C]. 7th International Conference on Control, Decision and Information Technologies (CoDIT), 2020:622-627. DOI: 10.1109/CoDIT49905.2020.9263945
doi: 10.1109/CoDIT49905.2020.9263945 |
[38] |
Salas-Olmedo M H, Moya-Gomez B, Garcia-Palomares J C, et al. Tourists' digital footprint in cities: Comparing Big Data sources[J]. Tourism Management, 2018, 66:13-25. DOI: 10.1016/j.tourman.2017.11.001
doi: 10.1016/j.tourman.2017.11.001 |
[39] | 李渊, 丁燕杰, 王德. 旅游者时间约束和空间行为特征的景区旅游线路设计方法研究[J]. 旅游学刊, 2016, 31(9):50-60. |
[ Li Y, Ding Y J, Wang D. A new approach for designing tourist routes by considering travel time constraints and spatial behavior characteristics of tourists[J]. Tourism Tribune, 2016, 31(9):50-60. ] DOI: 10.3969/j.iss n.1002-5006.2016.09.016
doi: 10.3969/j.iss n.1002-5006.2016.09.016 |
|
[40] |
Payntar N D, Hsiao W L, Covey R A, et al. Learning patterns of tourist movement and photography from geotagged photos at archaeological heritage sites in Cuzco, Peru[J]. Tourism Management, 2021, 82. DOI: 10.1016/j.tourman.2020.104165
doi: 10.1016/j.tourman.2020.104165 |
[41] |
Zhang C, Wu T, Zhang Y, et al. Deep semantic-aware network for zero-shot visual urban perception[J]. International Journal of Machine Learning and Cybernetics, 2021:1-15. DOI: 10.1007/s13042-021-01401-w
doi: 10.1007/s13042-021-01401-w |
[42] |
Qiu W, Li W, Liu X, et al. Subjectively measured streetscape perceptions to inform urban design strategies for Shanghai[J]. Isprs International Journal of Geo-information, 2021, 10(8):493. DOI: 10.3390/ijgi10080493
doi: 10.3390/ijgi10080493 |
[43] |
Key S, Gross M D. From architects' terms to computable descriptions of spatial qualities[J]. Spatial Cognition and Computation, 2021, 21(3):173-196. DOI:10.1080/1387 58 68.2020.1862125
doi: 10.1080/13875868.2020.1862125 |
[44] |
Zhang F, Zhou B, Liu L, et al. Measuring human perceptions of a large-scale urban region using machine learning[J]. Landscape and Urban Planning, 2018, 180:148-160. DOI: 10.1016/j.landurbplan.2018.08.020
doi: 10.1016/j.landurbplan.2018.08.020 |
[45] |
Arefieva V, Egger R, Yu J. A machine learning approach to cluster destination image on Instagram[J]. Tourism Management, 2021, 85:1-11. DOI: 10.1016/j.tourman. 2021.104318
doi: 10.1016/j.tourman. 2021.104318 |
[46] |
Paul I Agusti D. The clustering of city images on Instagram: A comparison between projected and perceived images[J]. Journal of Destination Marketing & Management, 2021, 20:1-12. DOI: 10.1016/j.jdmm.2021.100608
doi: 10.1016/j.jdmm.2021.100608 |
[47] |
Huang J, Obracht-Prondzynska H, Kamrowska-Zaluska D, et al. The image of the city on social media: A comparative study using "Big Data" and "Small Data" methods in the Tri-City Region in Poland[J]. Landscape and Urban Planning, 2021, 206:1-19. DOI: 10.1016/j.landurbplan.202 0.103977
doi: 10.1016/j.landurbplan.202 0.103977 |
[48] | 厦门市人民政府. 鼓浪屿历史风貌建筑保护规划修编[R]. 2016:11-20. |
[ Xiamen Municipal People's government. Revision of kulangsu historic building protection plan[R]. 2016:11-20. ] | |
[49] | 李道增. 环境行为学概论[M]. 北京: 清华大学出版社, 1999:10. |
[ Li D Z. Introduction to environmental behavior[M]. Beijing: Tsinghua University Press, 1999:10. ] | |
[50] |
塔娜, 柴彦威. 行为地理学的学科定位与前沿方向[J]. 地理科学进展, 2022, 41(1):1-15.
doi: 10.18306/dlkxjz.2022.01.001 |
[ Ta N, Chai Y W. Disciplinary position and research frontiers of behavioral geography[J]. Progress in Geography, 2022, 41(1):1-15. ] DOI: 10.18306/dlkxjz.2022.01.001
doi: 10.18306/dlkxjz.2022.01.001 |
|
[51] | 乐阳, 刘瑜, 陈云松, 等. 空间和地理计算与计算社会学的融合路径[J]. 武汉大学学报·信息科学版, 2022, 47(1):1-18. |
[ Yue Y, Liu Y, Chen Y S, et al. Integration Path of Spatial and Geo-Computing and Computational Social Science[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1):1-18. ] DOI: 10.13203/j.whugis 20 210619
doi: 10.13203/j.whugis 20 |
|
[52] | 杨敏, 李君轶, 徐雪. ICTs视角下的旅游流和旅游者时空行为研究进展[J]. 陕西师范大学学报(自然科学版), 2020, 48(4):46-55. |
[ Yang M, Li J Y, Xu X. The progress of tourist flow and tourist spatio-temporal behavior based on ICTs[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2020, 48(4):46-55. ] DOI: 10.15983/j.cnki.jsnu.2020.04.020
doi: 10.15983/j.cnki.jsnu.2020.04.020 |
[1] | 左溪冰, 刘智, 金飞, 林雨准, 王淑香, 刘潇, 李美霖. 面向高光谱影像小样本分类的全局-局部特征自适应融合方法[J]. 地球信息科学学报, 2023, 25(8): 1699-1716. |
[2] | 林娜, 何静, 王斌, 唐菲菲, 周俊宇, 郭江. 结合植被光谱特征与Sep-UNet的城市植被信息智能提取方法[J]. 地球信息科学学报, 2023, 25(8): 1717-1729. |
[3] | 张春菊, 刘文聪, 张雪英, 叶鹏, 汪陈, 朱少楠, 张达玉. 基于本体的金矿知识图谱构建方法[J]. 地球信息科学学报, 2023, 25(7): 1269-1281. |
[4] | 张彤, 刘仁宇, 王培晓, 高楚林, 刘杰, 王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景[J]. 地球信息科学学报, 2023, 25(7): 1297-1311. |
[5] | 刘敬一, 彭举, 唐建波, 胡致远, 郭琦, 姚晨, 陈金勇. 融合多特征的轨迹数据自适应聚类方法[J]. 地球信息科学学报, 2023, 25(7): 1363-1377. |
[6] | 曹兴文, 吴孟泉, 郑雪婷, 郑宏伟, 李映祥, 张安安. 室内空间布局约束下的在线跟踪注册学习方法[J]. 地球信息科学学报, 2023, 25(7): 1418-1431. |
[7] | 赵丹, 杜萍, 刘涛, 令振飞. 融合图自编码器与GRU的城市盗窃犯罪时空分布预测模型[J]. 地球信息科学学报, 2023, 25(7): 1448-1463. |
[8] | 金广垠, 沙恒宇, 张金雷, 黄金才. 基于路段-路口联合建模的对偶图卷积网络的行程时间估计方法[J]. 地球信息科学学报, 2023, 25(7): 1500-1513. |
[9] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[10] | 侯慧太, 蓝朝桢, 徐青. 基于卫星影像全局和局部深度学习特征检索的无人机绝对定位方法[J]. 地球信息科学学报, 2023, 25(5): 1064-1074. |
[11] | 张金雷, 陈奕洁, Panchamy Krishnakumari, 金广垠, 王骋程, 杨立兴. 基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713. |
[12] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[13] | 于方圆, 曹家玮, 李发源, 李思进. 顾及对象特征的地面式光伏电站提取及减碳效益评估[J]. 地球信息科学学报, 2023, 25(3): 529-545. |
[14] | 高建文, 管海燕, 彭代锋, 许正森, 康健, 季雅婷, 翟若雪. 基于局部-全局语义特征增强的遥感影像变化检测网络模型[J]. 地球信息科学学报, 2023, 25(3): 625-637. |
[15] | 江宝得, 许少芬, 王进, 王淼. 基于条件生成对抗网络的电子地图可视水印去除方法[J]. 地球信息科学学报, 2023, 25(2): 288-297. |
|