地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (10): 1911-1924.doi: 10.12082/dqxxkx.2022.220375
秦昆1,2(), 喻雪松1, 周扬1, 张凯1, 刘东海1, 王其新1, 贾涛1,2,*(
), 肖锐1,2, 卢宾宾1,2, 许刚2,3, 余洋1,2, 孟庆祥1,2
收稿日期:
2022-06-01
修回日期:
2022-07-20
出版日期:
2022-10-25
发布日期:
2022-12-25
通讯作者:
*贾涛(1983— ),男,山西闻喜人,博士,副教授,主要研究方向为时空大数据分析。E-mail: tao.jia@whu.edu.cn作者简介:
秦昆(1972— ),男,湖北随州人,博士,教授,主要研究方向为时空大数据分析、地理多元流分析、空间人文与社会地理计算。Email: qink@whu.edu.cn
基金资助:
QIN Kun1,2(), YU Xuesong1, ZHOU Yang1, ZHANG Kai1, LIU Donghai1, WANG Qixin1, JIA Tao1,2,*(
), XIAO Rui1,2, LU Binbin1,2, XU Gang2,3, YU Yang1,2, MENG Qingxiang1,2
Received:
2022-06-01
Revised:
2022-07-20
Online:
2022-10-25
Published:
2022-12-25
Contact:
JIA Tao
Supported by:
摘要:
世界是一个相互关联的网络。物质、信息、能量等的移动或交换嵌入地理空间形成的地理多元流网络,为从地理和网络角度研究全球性问题提供了新的视角。如何构建多主题、时变的地理多元流网络,识别其网络结构、时变规律和关联模式,并为解决全球性的人口移动、航空交通、国际关系、国际贸易等问题提供支持,是迫切需要解决的问题。本文提出了全球尺度地理多元流网络化挖掘及关联分析的研究框架,包括:多源数据收集与整理、地理多元流网络构建与结构识别、地理多元流网络演化分析、地理多元流网络关联分析。然后,分别对国际关系流网络、国际贸易流网络、全球航班流网络、全球人口移动流网络的相关研究进行综述分析,并结合示例介绍了其研究思路。此外,进一步综述分析了地理多元流关联分析的相关研究并提出了研究思路。本文为全球尺度地理多元流网络研究提供了一套研究框架和思路,并为国际关系、国际贸易、航空交通、人口移动等全球性问题研究提供参考,有望为发展基于“流”的时空分析方法做出基础性贡献。
秦昆, 喻雪松, 周扬, 张凯, 刘东海, 王其新, 贾涛, 肖锐, 卢宾宾, 许刚, 余洋, 孟庆祥. 全球尺度地理多元流的网络化挖掘及关联分析研究[J]. 地球信息科学学报, 2022, 24(10): 1911-1924.DOI:10.12082/dqxxkx.2022.220375
QIN Kun, YU Xuesong, ZHOU Yang, ZHANG Kai, LIU Donghai, WANG Qixin, JIA Tao, XIAO Rui, LU Binbin, XU Gang, YU Yang, MENG Qingxiang. Networked Mining and Association Analysis of Geographical Multiple Flows at a Global Scale[J]. Journal of Geo-information Science, 2022, 24(10): 1911-1924.DOI:10.12082/dqxxkx.2022.220375
[1] |
裴韬, 舒华, 郭思慧, 等. 地理流的空间模式:概念与分类[J]. 地球信息科学学报, 2020, 22(1):30-40.
doi: 10.12082/dqxxkx.2020.190736 |
[ Pei T, Shu H, Guo S H, et al. The concept and classification of spatial patterns of geographical flow[J], Journal of Geo-information Science, 2020, 22(1):30-40. ] DOI: 10.12082/dqxxkx. 2020.190736
doi: 10.12082/dqxxkx. 2020.190736 |
|
[2] | Batty M. The new science of cities[M]. Cambridge, Massachusetts: MIT Press, 2013. |
[3] | 郭仁忠. 空间分析[M]. 2版. 北京: 高等教育出版社, 2001. |
[ Guo R Z. Spacial analysis[M]. 2nd ed. Beijing: Higher Education Press, 2001. ] | |
[4] | 秦昆. GIS空间分析理论与方法[M]. 2版. 武汉: 武汉大学出版社, 2010. |
[ Qin K. Theories and methods of spatial analysis in GIS[M]. 2nd ed. Wuhan: Wuhan University Press, 2010. ] | |
[5] |
刘瑜, 姚欣, 龚咏喜, 等. 大数据时代的空间交互分析方法和应用再论[J]. 地理学报, 2020, 75(7):1523-1538.
doi: 10.11821/dlxb202007014 |
[ Liu Y, Yao X, Gong Y X, et al. Analytical methods and applications of spatial interactions in the era of big data[J]. Acta Geographica Sinica, 2020, 75(7):1523-1538. ] DOI: 10.118 21/dlxb202007014
doi: 10.11821/dlxb202007014 |
|
[6] |
Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684):440-442. DOI: 10.1038/30918
doi: 10.1038/30918 |
[7] |
Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512. DOI: 10.11 26/science.286.5439.509
doi: 10.1126/science.286.5439.509 pmid: 10521342 |
[8] |
Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12):7821-7826. DOI: 10.1073/pnas.122653799
doi: 10.1073/pnas.122653799 pmid: 12060727 |
[9] |
Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008. DOI: 10.1088/1742-5468/2008/10/p10008
doi: 10.1088/1742-5468 |
[10] |
Jeong H, Mason S P, Barabási A L, et al. Lethality and centrality in protein networks[J]. Nature, 2001, 411(6833):41-42. DOI: 10.1038/35075138
doi: 10.1038/35075138 |
[11] |
Amaral L A, Scala A, Barthelemy M, et al. Classes of small-world networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21):11149-11152. DOI: 10.1073/pnas.200327197
doi: 10.1073/pnas.200327197 pmid: 11005838 |
[12] | 高自友, 赵小梅, 黄海军, 等. 复杂网络理论与城市交通系统复杂性问题的相关研究[J]. 交通运输系统工程与信息, 2006, 6(3):41-47. |
[ Gao Z Y, Zhao X M, Huang H J, et al. Research on problems related to complex networks and urban traffic systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(3):41-47. ] DOI: 10.16097/j.cnki.1009-6744.2006.03.007
doi: 10.16097/j.cnki.1009-6744.2006.03.007 |
|
[13] |
Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer networks[J]. Physics Reports, 2014, 544(1):1-122. DOI: 10.1016/j.physrep.2014.07.001
doi: 10.1016/j.physrep.2014.07.001 |
[14] |
Borgatti S P, Mehra A, Brass D J, et al. Network analysis in the social sciences[J]. Science, 2009, 323(5916):892-895. DOI: 10.1126/science.1165821
doi: 10.1126/science.1165821 pmid: 19213908 |
[15] |
Aral S, Walker D. Identifying influential and susceptible members of social networks[J]. Science, 2012, 337(6092):337-341. DOI: 10.1126/science.1215842
doi: 10.1126/science.1215842 pmid: 22722253 |
[16] |
Lazer D, Pentland A, Adamic L, et al. Computational social science[J]. Science, 2009, 323(5915):721-723. DOI: 10.1126/science.1167742
doi: 10.1126/science.1167742 |
[17] | 罗玮, 罗教讲. 新计算社会学:大数据时代的社会学研究[J]. 社会学研究, 2015, 30(3):222-241,246. |
[ Luo W, Luo J J. New computational sociology: Sociological studies in the era of big data[J]. Sociological Studies, 2015, 30(3):222-241,246. ] DOI: 10.19934/j.cnki.shxyj.2015.03.010
doi: 10.19934/j.cnki.shxyj.2015.03.010 |
|
[18] | Petland A. Social physics: How good ideas spread-the lessons from a new science[M]. New York: Penguin Press. 2014 |
[19] | Petland A. Social physics: How social networks can make us smarter[M]. New York: Penguin Press. 2015. |
[20] | 汪小帆. 智慧社会:社会物理学与网络科学[J]. 中国信息化, 2015(4):9-10. |
[ Wang X F. Society: Social physics and network science[J]. Zhongguo Xinxihua, 2015(4):9-10. ] | |
[21] | 林珲, 张捷, 杨萍, 等. 空间综合人文学与社会科学研究进展[J]. 地球信息科学, 2006, 8(2):30-37. |
[ Lin H, Zhang J, Yang P, et al. Development on spatially integrated humanities and social science[J]. Geo-information Science, 2006, 8(2):30-37. ] DOI: 10.3969/j.issn.1560-8999.2006.02.006 | |
[22] | 林珲, 赖进贵, 周成虎. 空间综合人文学与社会科学研究[M]. 北京: 科学出版社, 2010. |
[ Lin H, Lai J G, Zhou C H. Spatially integrated humanities and social science[M]. Beijing: Science Press, 2010. ] | |
[23] |
秦昆, 林珲, 胡迪, 等. 空间综合人文学与社会科学研究综述[J]. 地球信息科学学报, 2020, 22(5):912-928.
doi: 10.12082/dqxxkx.2020.200232 |
[ Qin K, Lin H, Hu D, et al. A review of spatially integrated humanities and social sciences[J]. Journal of Geo-information Science, 2020, 22(5):911-928. ] DOI: 10.12082/dqxxkx. 2020.200232
doi: 10.12082/dqxxkx. 2020.200232 |
|
[24] |
宋长青, 葛岳静, 刘云刚, 等. 从地缘关系视角解析“一带一路”的行动路径[J]. 地理研究, 2018, 37(1):3-19.
doi: 10.11821/dlyj201801001 |
[ Song C Q, Ge Y J, Liu Y G, et al. Undertaking research on Belt and Road Initiative from the geo-relation perspective[J]. Geographical Research, 2018, 37(1):3-19. ]
doi: 10.11821/dlyj201801001 |
|
[25] |
姚博睿, 秦昆, 罗萍, 等. 特殊事件中国际关系网络时序演化分析[J]. 地球信息科学学报, 2021, 23(4):632-645.
doi: 10.12082/dqxxkx.2021.200366 |
[ Yao B R, Qin K, Luo P, et al. Sequential evolution analysis of international relations network in special events[J]. Journal of Geo-Information Science, 2021, 23(4):632-645. ] DOI: 10.12082/dqxxkx.2021.200366
doi: 10.12082/dqxxkx.2021.200366 |
|
[26] | 邓美薇. 中国与“一带一路”沿线国家的双边关系波动对贸易往来的影响——基于GDELT海量事件数据的实证分析[J]. 经济论坛, 2020(7):115-125. |
[ Deng M W. The effect of bilateral relations fluctuation on trade between China and the countries along the Belt and Road[J]. Economic Forum, 2020(7):115-125. ] | |
[27] |
漆林, 秦昆, 罗萍, 等. 基于GDELT新闻数据的冲突强度定量表达及冲突事件检测研究[J]. 地球信息科学学报, 2021, 23(11):1956-1970.
doi: 10.12082/dqxxkx.2021.210172 |
[ Qi L, Qin K, Luo P, et al. Quantitative expression of conflict intensity and conflict event detection based on GDELT news data[J]. Journal of Geo-information Science, 2021, 23(11):1956-1970.] DOI: 10.12 082/dqxxkx.2021.210172
doi: 10.12 082/dqxxkx.2021.210172 |
|
[28] | 钱宇华, 成红红, 梁新彦, 等. 大数据关联关系度量研究综述[J]. 数据采集与处理, 2015, 30(6):1147-1159. |
[ Qian Y H, Cheng H H, Liang X Y, et al. Review for variable association measures in big data[J]. Journal of Data Acquisition and Processing, 2015, 30(6):1147-1159. ] DOI: 10.16 337/j.1004-9037.2015.06.002
doi: 10.16 337/j.1004-9037.2015.06.002 |
|
[29] | 梁吉业, 冯晨娇, 宋鹏. 大数据相关分析综述[J]. 计算机学报, 2016, 39(1):1-18. |
[ Liang J Y, Feng C J, Song P. A survey on correlation analysis of big data[J]. Chinese Journal of Computers, 2016, 39(1):1-18. ] DOI: 10.11897/SP.J.1016.2016.00001
doi: 10.11897/SP.J.1016.2016.00001 |
|
[30] | Khulbe D, Kang C G, Sobolevsky S. Transportation interventions reshaping NYC commute: the probabilistic simulation framework assessing the impacts of ridesharing and Manhattan congestion surcharge[EB/OL]. 2020: arXiv: 2010. 06588. |
[31] |
Fagiolo G, Mastrorillo M. Does human migration affect international trade? a complex-network perspective[J]. PLoS One, 2014, 9(5):e97331. DOI: 10.1371/journal.pon e.0097331.
doi: 10.1371/journal.pon e.0097331 |
[32] |
Aleta A, Meloni S, Moreno Y. A multilayer perspective for the analysis of urban transportation systems[J]. Scientific Reports, 2017, 7:44359. DOI: 10.1038/srep44359
doi: 10.1038/srep44359 pmid: 28295015 |
[33] |
Kang C G, Jiang Z J, Liu Y. Measuring hub locations in time-evolving spatial interaction networks based on explicit spatiotemporal coupling and group centrality[J]. International Journal of Geographical Information Science, 2022, 36(2):360-381. DOI: 10.1080/13658816.2020.18634 11
doi: 10.1080/13658816.2020.18634 11 |
[34] | 马丽亚, 修春亮, 冯兴华. 多元流视角下东北城市网络特征分析[J]. 经济地理, 2019, 39(8):51-58. |
[ Ma L Y, Xiu C L, Feng X H. Analysis of network characteristics of northeast cities from the perspective of multi-flow[J]. Economic Geography, 2019, 39(8):51-58. ] DOI: 10.15957/j.cnki.jjdl.2019.08.007
doi: 10.15957/j.cnki.jjdl.2019.08.007 |
|
[35] | 钟业喜, 吴思雨, 冯兴华, 等. 多元流空间视角下长江中游城市群网络结构特征[J]. 江西师范大学学报(哲学社会科学版), 2020, 53(2):47-55. |
[ Zhong Y X, Wu S Y, Feng X H, et al. Network structure characteristics of middle Yangtze urban agglomeration from the perspective of multi-flow[J]. Journal of Jiangxi Normal University (Philosophy and Social Sciences Edition), 2020, 53(2):47-55. ] | |
[36] |
Bonaccorsi G, Riccaboni M, Fagiolo G, et al. Country centrality in the international multiplex network[J]. Applied Network Science, 2019, 4(1): 126. DOI:10.1007/s41109-019-0207-3
doi: 10.1007/s41109-019-0114-7 |
[37] |
Li Z L, Huang X, Hu T, et al. ODT FLOW: Extracting, analyzing, and sharing multi-source multi-scale human mobility[J]. PLoS One, 2021, 16(8):e0255259. DOI: 10.1371/journal.pone.0255259
doi: 10.1371/journal.pone.0255259 |
[38] |
Hafner-Burton E M, Kahler M, Montgomery A H. Network analysis for international relations[J]. International Organization, 2009, 63(3):559-592. DOI:10.1017/s0020818 309090195
doi: 10.1017/S0020818309090195 |
[39] | 刘慧. 国际关系的网络分析研究简评[J]. 国际观察, 2010(6):17-23. |
[ Liu H. Network analysis of international relations[J]. International Review, 2010(6):17-23. ] | |
[40] | 潘峰华, 赖志勇, 葛岳静. 社会网络分析方法在地缘政治领域的应用[J]. 经济地理, 2013, 33(7):15-21. |
[ Pan F H, Lai Z Y, Ge Y J. Social network analysis in geo-politics studies[J]. Economic Geography, 2013, 33(7):15-21. ] DOI: 10.15957/j.cnki.jjdl.2013.07.001
doi: 10.15957/j.cnki.jjdl.2013.07.001 |
|
[41] |
Yuan Y H, Liu Y, Wei G X. Exploring inter-country connection in mass media: A case study of China[J]. Computers, Environment and Urban Systems, 2017, 62:86-96. DOI: 10.1016/j.compenvurbsys.2016.10.012
doi: 10.1016/j.compenvurbsys.2016.10.012 |
[42] |
沈石, 袁丽华, 叶思菁, 等. 近40年中美地缘政治关系波动及背景解析[J]. 地理科学, 2019, 39(7):1063-1071.
doi: 10.13249/j.cnki.sgs.2019.07.004 |
[ Shen S, Yuan L H, Ye S J, et al. The fluctuation and background analysis of geopolitical relations between China and the United States during the last 40 years[J]. Scientia Geographica Sinica, 2019, 39(7):1063-1071. ] DOI: 10.13 249/j.cnki.sgs.2019.07.004
doi: 10.13249/j.cnki.sgs.2019.07.004 |
|
[43] |
沈石, 宋长青, 程昌秀, 等. GDELT:感知全球社会动态的事件大数据[J]. 世界地理研究, 2020, 29(1):71-76.
doi: 10.3969/j.issn.1004-9479.2020.01.2019800 |
[ Shen S, Song C Q, Cheng C X, et al. GDELT: Big event data for sensing global social dynamics[J]. World Regional Studies, 2020, 29(1):71-76. ]
doi: 10.3969/j.issn.1004-9479.2020.01.2019800 |
|
[44] |
秦昆, 罗萍, 姚博睿. GDELT数据网络化挖掘与国际关系分析[J]. 地球信息科学学报, 2019, 21(1):14-24.
doi: 10.12082/dqxxkx.2019.180674 |
[ Qin K, Luo P, Yao B R. Networked mining of GDELT and international relations analysis[J]. Journal of Geo-information Science, 2019, 21(1):14-24. ] DOI: 10.12082/dqxxkx.2019. 180674
doi: 10.12082/dqxxkx.2019. 180674 |
|
[45] |
Su Y, Lan Z Y, Lin Y R, et al. Tracking disaster response and relief following the 2015 Nepal earthquake[C]// 2016 IEEE 2nd International Conference on Collaboration and Internet Computing. IEEE, 2016:495-499. DOI: 10.1109/CIC.2016.075
doi: 10.1109/CIC.2016.075 |
[46] |
Kwak H, An J S. A first look at global news coverage of disasters by using the GDELT dataset[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014:300-308. DOI: 10.1007/978-3-319-13734-6_22
doi: 10.1007/978-3-319-13734-6_22 |
[47] |
Qiao F C, Li P, Zhang X, et al. Predicting social unrest events with hidden Markov models using GDELT[J]. Discrete Dynamics in Nature and Society, 2017, 2017:8180272. DOI: 10.1155/2017/8180272
doi: 10.1155/2017/8180272 |
[48] |
Keneshloo Y, Cadena J, Korkmaz G, et al. Detecting and forecasting domestic political crises: a graph-based approach[C]// Proceedings of the 2014 ACM conference on Web science. Bloomington, Indiana, USA. New York: ACM, 2014:192-196. DOI: 10.1145/2615569.2615698
doi: 10.1145/2615569.2615698 |
[49] |
Honti G, Czvetkó T, Sebestyén V, et al. Data describing the relationship between world news and sustainable development goals[J]. Data in Brief, 2021, 36:106978. DOI: 10.1016/j.dib.2021.106978
doi: 10.1016/j.dib.2021.106978 |
[50] |
Qiao F C, Wang H. Computational approach to detecting and predicting occupy protest events[C]// 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI). IEEE, 2015:94-97. DOI: 10.1109/IIKI.2015.28
doi: 10.1109/IIKI.2015.28 |
[51] |
Jiang L. The underlying causal network from global dyadic events: allies and rivals in international relations[C]// 2020 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking. IEEE, 2020:1029-1036. DOI: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00155
doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00155 |
[52] |
Elshendy M, Fronzetti C A. Big data analysis of economic news: hints to forecast macroeconomic indicators[J]. International Journal of Engineering Business Management, 2017, 9:1-12. DOI: 10.1177/1847979017720040
doi: 10.1177/1847979017720040 |
[53] |
Serrano M A, Boguñá M. Topology of the world trade web[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(<W>1 Pt 2):015101. DOI: 10.1103/PhysRevE.68.015101
doi: 10.1103/PhysRevE.68.015101 |
[54] |
Garlaschelli D, Loffredo M I. Structure and evolution of the world trade network[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 355(1):138-144. DOI: 10.1 016/j.physa.2005.02.075.
doi: 10.1 016/j.physa.2005.02.075 |
[55] |
Barigozzi M, Fagiolo G, Mangioni G. Identifying the community structure of the international-trade multi-network[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(11):2051-2066. DOI: 10.1016/j.physa.2011. 02.004.
doi: 10.1016/j.physa.2011. 02.004 |
[56] |
Gao C X, Sun M, Shen B. Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis[J]. Applied Energy, 2015, 156:542-554. DOI: 10.1016/j.apenergy.2015.07.054
doi: 10.1016/j.apenergy.2015.07.054 |
[57] |
宋周莺, 车姝韵, 杨宇. “一带一路”贸易网络与全球贸易网络的拓扑关系[J]. 地理科学进展, 2017, 36(11):1340-1348.
doi: 10.18306/dlkxjz.2017.11.003 |
[ Song Z Y, Che S Y, Yang Y. Topological relationship between trade network in the Belt and Road Initiative area and global trade network[J]. Progress in Geography, 2017, 36(11):1340-1348. ] DOI: 10.18306/dlkxjz.2017. 11.003
doi: 10.18306/dlkxjz.2017.11.003 |
|
[58] |
Cheung T K Y, Wong C W H, Zhang A M. The evolution of aviation network: global airport connectivity index 2006-2016[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 133:101826. DOI: 10.1 016/j.tre.2019.101826
doi: 10.1 016/j.tre.2019.101826 |
[59] |
Bauranov A, Parks S, Jiang X, et al. Quantifying the resilience of the US domestic aviation network during the COVID-19 pandemic[J]. Frontiers in Built Environment, 2021, 7:642295. DOI: 10.3389/fbuil.2021.642295
doi: 10.3389/fbuil.2021.642295 |
[60] |
Wang Y Q, Lu Q Y, Cao X B, et al. Travel time analysis in the Chinese coupled aviation and high-speed rail network[J]. Chaos, Solitons & Fractals, 2020, 139:109973. DOI: 10.1016/j.chaos.2020.109973
doi: 10.1016/j.chaos.2020.109973 |
[61] |
李思平, 周耀明. 全球疫情下的中国内地航空网络对外连通性[J]. 航空学报, 2021, 42(6):324569.
doi: 10.7527/S1000-6893.2020.24569 |
[ Li S P, Zhou Y M. External connectivity of China's mainland's air transport network in COVID-19 pandemic[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):324569. ] | |
[62] |
杜方叶, 王姣娥, 王涵. 新冠疫情对中国国际航空网络连通性的影响及空间差异[J]. 热带地理, 2020, 40(3):386-395.
doi: 10.13284/j.cnki.rddl.003248 |
[ Du F Y, Wang J E, Wang H. The impacts of COVID-19 on the connectivity of China's international air transport network and the spatial differences[J]. Tropical Geography, 2020, 40(3):386-395. ]
doi: 10.13284/j.cnki.rddl.003248 |
|
[63] | 刘瑜, 肖昱, 高松, 等. 基于位置感知设备的人类移动研究综述[J]. 地理与地理信息科学, 2011, 27(4):8-13,31,2. |
[ Liu Y, Xiao Y, Gao S, et al. A review of human mobility research based on location aware devices[J]. Geography and Geo-information Science, 2011, 27(4):8-13,31,2. ] | |
[64] | 刘瑜, 康朝贵, 王法辉. 大数据驱动的人类移动模式和模型研究[J]. 武汉大学学报·信息科学版, 2014, 39(6):660-666. |
[ Liu Y, Kang C G, Wang F H. Towards big data-driven human mobility patterns and models[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):660-666. ] DOI: 10.13203/j.whugis20140149
doi: 10.13203/j.whugis20140149 |
|
[65] |
陆锋, 刘康, 陈洁. 大数据时代的人类移动性研究[J]. 地球信息科学学报, 2014, 16(5):665-672.
doi: 10.3724/SP.J.1047.2014.00665 |
[ Lu F, Liu K, Chen J. Research on human mobility in big data era[J]. Journal of Geo-information Science, 2014, 16(5):665-672. ] DOI: 10.3724/SP.J.1047.2014.00665
doi: 10.3724/SP.J.1047.2014.00665 |
|
[66] |
González M C, Hidalgo C A, Barabási A-L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196):779-782. DOI: 10.1038/nature06958
doi: 10.1038/nature06958 |
[67] | 刘二见, 闫小勇. 预测人类移动行为的介入机会类模型研究进展[J]. 物理学报, 2020, 69(24):66-73. |
[ Liu E J, Yan X Y. Research advances in intervening opportunity class models for predicting human mobility[J]. Acta Phys.Sin, 2020, 69(24):66-73. ] DOI: 10.7498/aps.69.20201119
doi: 10.7498/aps.69.20201119 |
|
[68] |
Liu Y, Sui Z W, Kang C G, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data[J]. PLoS One, 2014, 9(1):e86026
doi: 10.1371/journal.pone.0086026 |
[69] |
Jia T, Yu X S, Shi W Z, et al. Detecting the regional delineation from a network of social media user interactions with spatial constraint: A case study of Shenzhen, China[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 531:121719. DOI: 10.1016/j.physa.2019.121719
doi: 10.1016/j.physa.2019.121719 |
[70] |
Jia T, Yu X S, Li X, et al. Identification and analysis of urban influential regions using spatial interaction networks[J]. Transactions in GIS, 2021, 25(6):2821-2839. DOI: 10.1111/tgis.12806
doi: 10.1111/tgis.12806 |
[71] |
Gallotti R, Barthelemy M. The multilayer temporal network of public transport in Great Britain[J]. Scientific Data, 2015, 2:140056. DOI: 10.1038/sdata.2014.56
doi: 10.1038/sdata.2014.56 |
[72] |
Belyi A, Bojic I, Sobolevsky S, et al. Global multi-layer network of human mobility[J]. International Journal of Geographical Information Science, 2017, 31(7):1381-1402. DOI: 10.1080/13658816.2017.1301455.
doi: 10.1080/13658816.2017.1301455 |
[73] |
Abel G J, Sander N. Quantifying global international migration flows[J]. Science, 2014, 343(6178):1520-1522. DOI: 10.1126/science.1248676.
doi: 10.1126/science.1248676 pmid: 24675962 |
[74] |
Sobolevsky S, Szell M, Campari R, et al. Delineating geographical regions with networks of human interactions in an extensive set of countries[J]. PLoS One, 2013, 8(12):e81707. DOI: 10.1371/journal.pone.0081707
doi: 10.1371/journal.pone.0081707 |
[75] |
Hawelka B, Sitko I, Beinat E, et al. Geo-located Twitter as proxy for global mobility patterns[J]. Cartography and Geographic Information Science, 2014, 41(3):260-271. DOI: 10.1080/15230406.2014.890072
doi: 10.1080/15230406.2014.890072 pmid: 27019645 |
[76] |
Sgrignoli P, Metulini R, Schiavo S, et al. The relation between global migration and trade networks[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 417:245-260. DOI: 10.1016/j.physa.2014.09.037
doi: 10.1016/j.physa.2014.09.037 |
[77] |
Miguéns J I L, Mendes J F F. Travel and tourism: Into a complex network[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(12):2963-2971. DOI: 10.1 016/j.physa.2008.01.058
doi: 10.1 016/j.physa.2008.01.058 |
[78] |
Lau H, Khosrawipour V, Kocbach P, et al. The association between international and domestic air traffic and the Coronavirus (COVID-19) outbreak[J]. Journal of Microbiology, Immunology and Infection, 2020, 53(3):467-472. DOI: 10.1016/j.jmii.2020.03.026
doi: 10.1016/j.jmii.2020.03.026 pmid: 32299783 |
[79] | Seyfi S, Hall C M, Shabani B. COVID-19 and international travel restrictions: the geopolitics of health and tourism[J]. Tourism Geographies, 2020:1-17. DOI:10.1080/1461 6688.2020.1833972 |
[80] |
Mucha P J, Richardson T, Macon K, et al. Community structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980):876-878. DOI: 10.11 26/science.1184819
doi: 10.1126/science.1184819 pmid: 20466926 |
[81] |
Altman N, Krzywinski M. Association, correlation and causation[J]. Nature Methods, 2015, 12(10):899-900. DOI: 10.1038/nmeth.3587
doi: 10.1038/nmeth.3587 pmid: 26688882 |
[82] |
Tao R, Thill J C. Spatial cluster detection in spatial flow data[J]. Geographical Analysis, 2016, 48(4):355-372. DOI: 10.1111/gean.12100
doi: 10.1111/gean.12100 |
[83] |
Tao R, Thill J C. Flow Cross K-function: A bivariate flow analytical method[J]. International Journal of Geographical Information Science, 2019, 33(10):2055-2071. DOI: 10.1080/13658816.2019.1608362
doi: 10.1080/13658816.2019.1608362 |
[84] |
Berglund S, Karlström A. Identifying local spatial association in flow data[J]. Journal of Geographical Systems, 1999, 1(3):219-236. DOI: 10.1007/s101090050013
doi: 10.1007/s101090050013 |
[85] |
Brahmbhatt J, Menezes R. On the relation between tourism and trade: A network experiment[C]// 2013 IEEE 2nd Network Science Workshop. IEEE, 2013:74-81. DOI: 1 0.1109/NSW.2013.6609197
doi: 1 0.1109/NSW.2013.6609197 |
[86] |
Garas A, Lapatinas A, Poulios K. The relation between migration and FDI in the OECD from a complex network perspective[J]. Advances in Complex System, 2016, 19(6n07):1650009. DOI: 10.1142/s0219525916500090
doi: 10.1142/s0219525916500090 |
[87] |
Schon J, Johnson J C. How inter-state amity and animosity complement migration networks to drive refugee flows: A multi-layer network analysis, 1991-2016[J]. PLoS One, 2021, 16(1):e0245712. DOI: 10.1371/journal.pone.0245712
doi: 10.1371/journal.pone.0245712 |
[88] | 王兴隆, 朱丽纳, 石宗北. 多层航线聚合网络建模及相关性分析[J]. 科学技术与工程, 2020, 20(3):1243-1249. |
[ Wang X L, Zhu L N, Shi Z B. Multi-layer route aggregation network modeling and correlation analysis[J]. Science Technology and Engineering, 2020, 20(3):1243-1249. ] | |
[89] |
Kobierecki M M. Aviation diplomacy: A conceptual framework for analyzing the relationship between aviation and international relations[J]. Place Branding and Public Diplomacy, 2021, 17(4):293-303. DOI:10.1057/s41254-020-00172-5
doi: 10.1057/s41254-020-00172-5 |
[90] |
Forsyth P. Martin Kunz Memorial Lecture. Tourism benefits and aviation policy[J]. Journal of Air Transport Management, 2006, 12(1):3-13. DOI: 10.1016/j.jairtraman.2005.09.001
doi: 10.1016/j.jairtraman.2005.09.001 |
[91] |
Snyder D, Kick E L. Structural position in the world system and economic growth, 1955-1970: A multiple-network analysis of transnational interactions[J]. American Journal of Sociology, 1979, 84(5):1096-1126. DOI: 10.1 086/226902
doi: 10.1 086/226902 |
[92] |
Elshendy M, Colladon A F, Battistoni E, et al. Using four different online media sources to forecast the crude oil price[J]. Journal of Information Science, 2018, 44(3):408-421. DOI: 10.1177/0165551517698298
doi: 10.1177/0165551517698298 |
[1] | 潘佳乐, 信睿. COVID-19疫情前后北美五大湖航运网络多尺度时空变化及影响因素研究[J]. 地球信息科学学报, 2023, 25(7): 1481-1499. |
[2] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[3] | 黄浩, 王俊超, 王成芳, 谢苑仪, 张问楚. 基于复杂网络的社区供应保障韧性评估方法[J]. 地球信息科学学报, 2023, 25(12): 2303-2314. |
[4] | 陈刚, 王光辉, 郑满茵. 上市公司与客户联系视角下的中国城际网络结构时空演化研究[J]. 地球信息科学学报, 2023, 25(1): 223-238. |
[5] | 梅强, 胡勤友, 刘希亮, 赵瑞娜, 杨春, 王鹏, 戚玉玲, 杨洋, 袁启睿. 全球LNG海上运输网络演化及中国贸易现状分析[J]. 地球信息科学学报, 2022, 24(9): 1701-1716. |
[6] | 胡昊宇, 黄莘绒, 李沛霖, 赵鹏军. 流空间视角下中国城市群网络结构特征比较——基于铁路客运班次的分析[J]. 地球信息科学学报, 2022, 24(8): 1525-1540. |
[7] | 谭德明, 李延欢. 可持续TOD建设视角下的轨道站点客流潜力模型构建[J]. 地球信息科学学报, 2022, 24(12): 2356-2372. |
[8] | 贺卓文, 陈楠. 复杂网络理论在黄土高原沟谷地貌特征研究中的应用[J]. 地球信息科学学报, 2021, 23(7): 1196-1207. |
[9] | 冯子钰, 施润和. 中国近地面PM2.5浓度与排放的时空分布及其关联分析[J]. 地球信息科学学报, 2021, 23(7): 1221-1230. |
[10] | 姚博睿, 秦昆, 罗萍, 朱炤瑗, 漆林. 特殊事件中国际关系网络时序演化分析[J]. 地球信息科学学报, 2021, 23(4): 632-645. |
[11] | 王晓凡, 方志祥, 仲浩宇, 邹欣妍. 传染病防控下的市民慢性病药品现场购药需求的周期优化[J]. 地球信息科学学报, 2021, 23(2): 307-317. |
[12] | 赵韶雅, 杨星斗, 戴特奇, 张超. 基于刷卡数据的公共汽车客流网络复杂性日内变化研究[J]. 地球信息科学学报, 2020, 22(6): 1254-1267. |
[13] | 邓敏, 蔡建南, 杨文涛, 唐建波, 杨学习, 刘启亮, 石岩. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1): 41-56. |
[14] | 秦昆, 罗萍, 姚博睿. GDELT数据网络化挖掘与国际关系分析[J]. 地球信息科学学报, 2019, 21(1): 14-24. |
[15] | 方志祥, 余红楚, 黄守倩. 海洋运输网络研究进展与趋势探讨[J]. 地球信息科学学报, 2018, 20(5): 554-563. |
|