地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (6): 1215-1227.doi: 10.12082/dqxxkx.2023.210696

• 专刊:地理时空知识图谱理论方法与应用 • 上一篇    下一篇

大规模地球科学知识图谱构建与共享应用框架研究与实践

诸云强1,2,7(), 孙凯1,*(), 胡修棉3, 闾海荣4,5, 王新兵6, 杨杰1, 王曙1, 李威蓉1,7, 宋佳1,2, 苏娜1, 牟兴林8   

  1. 1.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
    2.江苏省地理信息协同创新中心,南京 210023
    3.南京大学地球科学与工程学院,南京 210023
    4.清华大学自动化系,北京 100084
    5.福州数据技术研究院,福州 350207
    6.上海交通大学电子信息与电气工程学院 上海 200240
    7.中国科学院大学,北京 100049
    8.自然资源部国土卫星遥感应用中心,北京 100048
  • 收稿日期:2021-11-01 修回日期:2022-01-29 出版日期:2023-06-25 发布日期:2023-06-02
  • 通讯作者: *孙 凯(1990— ),男,山西长治人,博士后,研究方向是地学知识图谱构建及应用。E-mail: sunk@lreis.ac.cn
  • 作者简介:诸云强(1977— ),男,江西广丰人,博士,研究员,研究方向为分布式数据共享关键技术、地理空间数据本体与应用、地学知识图谱及应用、资源环境信息系统。E-mail: zhuyq@lreis.ac.cn
  • 基金资助:
    国家自然科学基金项目(42050101);国家自然科学基金项目(41771430);国家自然科学基金项目(41631177);中国科学院战略性先导科技专项(XDA23100100)

Research and Practice on the Framework for the Construction, Sharing, and Application of Large-scale Geoscience Knowledge Graphs

ZHU Yunqiang1,2,7(), SUN Kai1,*(), HU Xiumian3, LV Hairong4,5, WANG Xinbing6, YANG Jie1, WANG Shu1, LI Weirong1,7, SONG Jia1,2, SU Na1, MU Xinglin8   

  1. 1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
    3. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
    4. Department of Automation, Tsinghua University, Beijing 100084, China
    5. Fuzhou Institute for Data Technology, Fuzhou 350207, China
    6. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    7. University of Chinese Academy of Sciences, Beijing 100049, China
    8. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
  • Received:2021-11-01 Revised:2022-01-29 Online:2023-06-25 Published:2023-06-02
  • Contact: *SUN Kai, E-mail: sunk@lreis.ac.cn
  • Supported by:
    National Natural Science Foundation of China(42050101);National Natural Science Foundation of China(41771430);National Natural Science Foundation of China(41631177);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23100100)

摘要:

地球科学(以下简称地学)知识图谱具有强大的知识表示和语义推理能力,已成为地学大数据和地学人工智能发展必要的基础设施。然而,目前的地学知识图谱研究主要面向实验场景,缺乏面向实际应用的大规模地学知识图谱构建方法和共享应用框架研究,导致尚未真正在地学领域现实应用中得到使用。为此,本文面向地学大数据和人工智能研究与应用对地学知识图谱的迫切需求,首先研究了大规模地学知识图谱的构建技术,在此基础上,提出一种覆盖地学知识图谱构建、共享和应用全生命周期的总体框架。然后,以“深时数字地球(DDE)”国际大科学计划为例,开展了面向实际应用的知识图谱平台研发实践。最后,利用该平台,构建了DDE大规模地学知识图谱,开展了知识图谱开放共享,有效实现了知识图谱应用,证明本框架可有效支撑大规模地学知识图谱的构建与共享应用。本文对于地学知识图谱现实应用价值的实现具有重要的促进作用。

关键词: 地学知识图谱, 地学本体, 知识挖掘, 知识表达, 知识共享, 知识服务, 知识应用

Abstract:

Geoscience Knowledge Graph (GKG) has strong capabilities of knowledge representation and semantic reasoning, thereby becoming a required infrastructure for the development of geoscience big data and geoscience artificial intelligence. However, existing studies on GKG were mainly conducted under the experimental scenarios. Because of a lack of research on the general framework of construction methods, sharing, and application of large-scale GKG for practical applications, it has not been used in practical applications in the geoscience field. For this reason, towards the needs of research and applications of geoscience big data and artificial intelligence for GKG, this paper first studied the construction techniques of large-scale GKG. Then, a general framework for covering the lifecycle of GKG including its construction, sharing, and application was proposed. Taking the big science program “Deep-Time Digital Earth (DDE)” as an example, the practice of developing GKG platform towards the practical application of DDE was carried out. Using this platform, this paper realized the construction of DDE large-scale GKG, the open sharing and application of built GKG, proving that the proposed framework can effectively support the construction, sharing, and application of large-scale GKG. This paper plays an important role in promoting the realization of the practical application value of GKG.

Key words: geoscience knowledge graph, geoscience ontology, knowledge mining, knowledge representation, knowledge sharing, knowledge service, knowledge application