地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (6): 1215-1227.doi: 10.12082/dqxxkx.2023.210696
• 专刊:地理时空知识图谱理论方法与应用 • 上一篇 下一篇
诸云强1,2,7(), 孙凯1,*(
), 胡修棉3, 闾海荣4,5, 王新兵6, 杨杰1, 王曙1, 李威蓉1,7, 宋佳1,2, 苏娜1, 牟兴林8
收稿日期:
2021-11-01
修回日期:
2022-01-29
出版日期:
2023-06-25
发布日期:
2023-06-02
通讯作者:
*孙 凯(1990— ),男,山西长治人,博士后,研究方向是地学知识图谱构建及应用。E-mail: sunk@lreis.ac.cn作者简介:
诸云强(1977— ),男,江西广丰人,博士,研究员,研究方向为分布式数据共享关键技术、地理空间数据本体与应用、地学知识图谱及应用、资源环境信息系统。E-mail: zhuyq@lreis.ac.cn
基金资助:
ZHU Yunqiang1,2,7(), SUN Kai1,*(
), HU Xiumian3, LV Hairong4,5, WANG Xinbing6, YANG Jie1, WANG Shu1, LI Weirong1,7, SONG Jia1,2, SU Na1, MU Xinglin8
Received:
2021-11-01
Revised:
2022-01-29
Online:
2023-06-25
Published:
2023-06-02
Contact:
*SUN Kai, E-mail: Supported by:
摘要:
地球科学(以下简称地学)知识图谱具有强大的知识表示和语义推理能力,已成为地学大数据和地学人工智能发展必要的基础设施。然而,目前的地学知识图谱研究主要面向实验场景,缺乏面向实际应用的大规模地学知识图谱构建方法和共享应用框架研究,导致尚未真正在地学领域现实应用中得到使用。为此,本文面向地学大数据和人工智能研究与应用对地学知识图谱的迫切需求,首先研究了大规模地学知识图谱的构建技术,在此基础上,提出一种覆盖地学知识图谱构建、共享和应用全生命周期的总体框架。然后,以“深时数字地球(DDE)”国际大科学计划为例,开展了面向实际应用的知识图谱平台研发实践。最后,利用该平台,构建了DDE大规模地学知识图谱,开展了知识图谱开放共享,有效实现了知识图谱应用,证明本框架可有效支撑大规模地学知识图谱的构建与共享应用。本文对于地学知识图谱现实应用价值的实现具有重要的促进作用。
诸云强, 孙凯, 胡修棉, 闾海荣, 王新兵, 杨杰, 王曙, 李威蓉, 宋佳, 苏娜, 牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践[J]. 地球信息科学学报, 2023, 25(6): 1215-1227.DOI:10.12082/dqxxkx.2023.210696
ZHU Yunqiang, SUN Kai, HU Xiumian, LV Hairong, WANG Xinbing, YANG Jie, WANG Shu, LI Weirong, SONG Jia, SU Na, MU Xinglin. Research and Practice on the Framework for the Construction, Sharing, and Application of Large-scale Geoscience Knowledge Graphs[J]. Journal of Geo-information Science, 2023, 25(6): 1215-1227.DOI:10.12082/dqxxkx.2023.210696
[1] | 孙鸿烈. 地学大辞典[M]. 北京: 科学出版社, 2017. |
[ Sun H L. Dictionary of geoscience[M]. Beijing: Science Press, 2017. ] | |
[2] | 郭华东, 王力哲, 陈方, 等. 科学大数据与数字地球[J]. 科学通报, 2014, 59(12):1047-1054. |
[ Guo H D, Wang L Z, Chen F, et al. Scientific big data and digital Earth[J]. Chinese Science Bulletin. 2014, 59(12):1047-1054. ] DOI:10.1360/972013-1054
doi: 10.1360/972013-1054 |
|
[3] |
Miller H J, Goodchild M F. Data-driven geography[J]. GeoJournal, 2015, 80(4):449-461. DOI:10.1007/s10708-0 14-9602-6
doi: 10.1007/s10708-014-9602-6 |
[4] | 周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究[J]. 中国科学:地球科学, 2021, 51(7):1070-1079. |
[ Zhou C H, Wang H, Wang C S, et al. Prospects for the research on geoscience knowledge graph in the big data era[J]. Science China Earth Sciences, 2021, 51(7):1070-1079. ] DOI:10.1360/SSTe-2020-0337
doi: 10.1360/SSTe-2020-0337 |
|
[5] | 林珲, 游兰, 胡传博, 等. 时空大数据时代的地理知识工程展望[J]. 武汉大学学报·信息科学版, 2018, 43(12):2205-2211. |
[ Lin H, You L, Hu C B, et al. Prospect of geo-knowledge engineering in the era of spatio-temporal big data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):452-458. ] DOI:10.13203/j.whugis20180318
doi: 10.13203/j.whugis20180318 |
|
[6] | Hey A J, Tansley S, Tolle K M. The fourth paradigm: Data-intensive scientific discovery[M]. WA: Microsoft research Redmond, 2009. |
[7] |
Zhu Y Q, Zhu A-X, Feng M, et al. A similarity-based automatic data recommendation approach for geographic models[J]. International Journal of Geographical Information Science, 2017, 31(7):1403-1424. DOI:10.1080/13658816.2017.1300805
doi: 10.1080/13658816.2017.1300805 |
[8] |
Zhu Y Q, Yang J. Automatic data matching for geospatial models: a new paradigm for geospatial data and models sharing[J]. Annals of GIS, 2019, 25(4):283-298. DOI:10.1080/19475683.2019.1670735
doi: 10.1080/19475683.2019.1670735 |
[9] | 黄恒琪, 于娟, 廖晓, 等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6):1-12. |
[ Huang H Q, Yu J, Liao X, et al. Review on Knowledge Graphs[J]. Computer Systems and Applications, 2019, 28(6):1-12. ] DOI:10.15888/j.cnki.csa.006915
doi: 10.15888/j.cnki.csa.006915 |
|
[10] |
Lample G, Ballesteros M, Subramanian S, et al. Neural architectures for named entity recognition[C]. Proceedings of NAACL, San Diego, USA, 2016. DOI:10.18653/v1/N16-1030
doi: 10.18653/v1/N16-1030 |
[11] |
Zhang Z Z, Sun L, Han X P. A joint model for entity set expansion and attribute extraction from web search queries[C]. Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, USA. 2016. DOI:10.5555/3016100.3016336
doi: 10.5555/3016100.3016336 |
[12] | Pawar S, Palshikar G K, Bhattacharyya P. Relation extraction: A survey[preprint]. 2017-12-14. |
[13] |
Zheng S C, Hao Y X, Lu D Y, et al. Joint entity and relation extraction based on a hybrid neural network[J]. Neurocomputing, 2017, 257:59-66. DOI:10.1016/j.neucom.2016.12.075
doi: 10.1016/j.neucom.2016.12.075 |
[14] |
Sun Z Q, Hu W, Zhang Q H, et al. Bootstrapping entity alignment with knowledge graph embedding[C]. Proceedings of the IJCAI, Stockholm, Sweden, 2018. DOI:10.24963/ijcai.2018/611
doi: 10.24963/ijcai.2018/611 |
[15] |
Wang Q, Mao Z D, Wang B, et al. Knowledge graph embedding: A survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12):2724-2743. DOI:10.1109/TKDE.2017.2754499
doi: 10.1109/TKDE.2017.2754499 |
[16] |
Lin Y K, Liu Z Y, Sun M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]. Proceedings of the AAAI conference on artificial intelligence, Austin, USA, 2015. DOI:10.5555/2886521.2886624
doi: 10.5555/2886521.2886624 |
[17] |
Ji S X, Pan S R, Cambria E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021:1-21. DOI:10.1109/TNNLS.2021.3070843
doi: 10.1109/TNNLS.2021.3070843 |
[18] | Mendes P N, Jakob M, Bizer C. DBpedia: A multilingual cross-domain knowledge base[J]. Speech Communication, 2012:1813-1817. |
[19] |
Tanon T P, Weikum G, Suchanek F. Yago 4: A reason-able knowledge base[C]. Proceedings of the European Semantic Web Conference, Heraklion, Greece, 2020. DOI:10.1007/978-3-030-49461-2_34
doi: 10.1007/978-3-030-49461-2_34 |
[20] |
VrandeČiĆ D, Krötzsch M. Wikidata: A free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10):78-85. DOI:10.1145/2629489
doi: 10.1145/2629489 |
[21] | 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606. |
[ Xu Z L, Sheng Y P, He L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606. ] DOI:10.3969/j.issn.1001-0548.2016.04.012
doi: 10.3969/j.issn.1001-0548.2016.04.012 |
|
[22] |
Shao B L, Li X J, Bian G Q. A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph[J]. Expert Systems with Applications, 2021,165,113764. DOI:10.1016/j.eswa.2020.113764
doi: 10.1016/j.eswa.2020.113764 |
[23] |
Chen X J, Jia S B, Xiang Y. A review: Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020,141,112948. DOI: 10.1016/j.eswa.2019.112948
doi: 10.1016/j.eswa.2019.112948 |
[24] | Zhang Y Y, Dai H J, Kozareva Z, et al. Variational reasoning for question answering with knowledge graph[C]. Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018. |
[25] |
齐浩, 董少春, 张丽丽, 等. 地球科学知识图谱的构建与展望[J]. 高校地质学报, 2020, 26(1):2-10.
doi: 10.16108/j.issn1006-7493.2019099 |
[ Qi H, Dong S C, Zhang L L, et al. Construction of earth science knowledge Graph and Its Future Perspectives[J]. Geological Journal of China Universities, 2020, 26(1):2-10. ] DOI:10.16108/j.issn1006-7493.2019099
doi: 10.16108/j.issn1006-7493.2019099 |
|
[26] |
Zhou C H, Wang H, Wang C S, et al. Prospects for the research on geoscience knowledge graph in the Big Data Era[J]. Science China Earth Sciences, 2021, 64:1105-1114. DOI: 10.1007/s11430-020-9750-4
doi: 10.1007/s11430-020-9750-4 |
[27] | 高松. 地理空间人工智能的近期研究总结与思考[J]. 武汉大学学报·信息科学版, 2020, 45(12):1865-1874. |
[ Gao S. A review of recent researches and reflections on geospatial artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12):1865-1874. ] DOI:10.13203/j.whugis20200597
doi: 10.13203/j.whugis20200597 |
|
[28] | 张雪英, 张春菊, 吴明光, 等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学:信息科学, 2020, 50(7):1019-1032. |
[ Zhang X Y, Zhang C J, Wu M G, et al. Spatio-temporal features based geographical knowledge graph construction[J]. SCIENTIA SINICA Informationis, 2020, 50(7):1019-1032. ] DOI:10.1360/SSI-2019-0269
doi: 10.1360/SSI-2019-0269 |
|
[29] |
Wang S, Zhang X Y, Ye P, et al. Geographic Knowledge Graph (GeoKG): A formalized geographic knowledge representation[J]. ISPRS International Journal of Geo-information, 2019, 8(4):184-207. DOI:10.3390/ijgi8040184
doi: 10.3390/ijgi8040184 |
[30] |
陆锋, 余丽, 仇培元. 论地理知识图谱[J]. 地球信息科学学报, 2017, 19(6):723-734.
doi: 10.3724/SP.J.1047.2017.00723 |
[ Lu F, Yu L, Qiu P Y. On geographic knowledge graph[J]. Journal of Geo-information Science, 2017, 19(6):723-734. ] DOI:10.3724/SP.J.1047.2017.00723
doi: 10.3724/SP.J.1047.2017.00723 |
|
[31] |
王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1):16-28.
doi: 10.12082/dqxxkx.2021.200632 |
[ Wang Z H, Yang X M, Zhou C H. Geographic knowledge graph for remote sensing big data[J]. Journal of Geo-information Science, 2021, 23(1):16-28. ] DOI:10.12082/dqxxkx.2021.200632
doi: 10.12082/dqxxkx.2021.200632 |
|
[32] |
Lozano M G, Schreiber J, Brynielsson J. Tracking geographical locations using a geo-aware topic model for analyzing social media data[J]. Decision Support Systems, 2017, 99:18-29. DOI:10.1016/j.dss.2017.05.006
doi: 10.1016/j.dss.2017.05.006 |
[33] |
Wang J M, Hu Y J, Joseph K. NeuroTPR: A neuro-net toponym recognition model for extracting locations from social media messages[J]. Transactions in GIS, 2020, 24(3):719-735. DOI:10.1111/tgis.12627
doi: 10.1111/tgis.12627 |
[34] | 余丽, 陆锋, 刘希亮. 开放式地理实体关系抽取的Bootstrapping方法[J]. 测绘学报, 2016, 45(5):616-622. |
[ Yu L, Lu F, Liu X L. A bootstrapping based approach for open geo-entity relation extraction[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):616-622. ] DOI:10.11947/j.AGCS.2016.20150181
doi: 10.11947/j.AGCS.2016.20150181 |
|
[35] |
余丽, 陆锋, 刘希亮, 等. 稀疏地理实体关系的关键词提取方法[J]. 地球信息科学学报, 2016, 18(11):1465-1475.
doi: 10.3724/SP.J.1047.2016.01465 |
[ Yu L, Lu F, Liu X L, et al. A method of context enhanced keyword extraction for sparse geo-entity relation[J]. Journal of Geo-information Science, 2016, 18(11):1465-1475. ] DOI:10.3724/SP.J.1047.2016.01465
doi: 10.3724/SP.J.1047.2016.01465 |
|
[36] |
Trisedya B D, Qi J Z, Zhang R. Entity alignment between knowledge graphs using attribute embeddings[C]. Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019. DOI:10.1609/aaai.v33i01.3301297
doi: 10.1609/aaai.v33i01.3301297 |
[37] |
Yu L, Qiu P Y, Liu X L, et al. A holistic approach to aligning geospatial data with multidimensional similarity measuring[J]. International journal of digital earth, 2018, 11(8):845-862. DOI:10.1080/17538947.2017.1359688
doi: 10.1080/17538947.2017.1359688 |
[38] | Mai G C, Janowicz K, Yan B, et al. Multi-Scale Representation Learning for Spatial Feature Distributions using Grid Cells[C]. Proceedings of the International Conference on Learning Representations. Addis Ababa, Ethiopia, 2020. |
[39] |
Mai G C, Janowicz K, Cai L, et al. SE-KGE: A location-aware Knowledge Graph Embedding model for Geographic question answering and spatial semantic lifting[J]. Transactions in GIS, 2020, 24(3):623-655. DOI:10.1111/tgis.12629
doi: 10.1111/tgis.12629 |
[40] |
Qiu P Y, Gao J L, Yu L, et al. Knowledge embedding with geospatial distance restriction for geographic knowledge graph completion[J]. ISPRS International Journal of Geo-information, 2019, 8(6):254-276. DOI:10.10.3390/ijgi8060254
doi: 10.10.3390/ijgi8060254 |
[41] |
Ma X G. Knowledge graph construction and application in geosciences: A review[preprint]. 2021-04-30. DOI:10.31223/x5z898
doi: 10.31223/x5z898 |
[42] | 陈晓慧, 刘俊楠, 徐立, 等. COVID-19病例活动知识图谱构建——以郑州市为例[J]. 武汉大学学报·信息科学版, 2020, 45(6):816-825. |
[ Chen X H, Liu J N, Xu L, et al. Construction of the COVID-19 epidemic cases activity knowledge graph: A case study of Zhengzhou City[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6):816-825. ] DOI:10.13203/j.whugis20200201
doi: 10.13203/j.whugis20200201 |
|
[43] | 蒋秉川, 游雄, 李科, 等. 利用地理知识图谱的COVID-19疫情态势交互式可视分析[J]. 武汉大学学报·信息科学版, 2020, 45(6):836-845. |
[ Jiang B C, You X, Li K, et al. Interactive visual analysis of COVID-19 epidemic situation using geographic knowledge graph[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6):836-845. ] DOI:10.13203/j.whugis20200153
doi: 10.13203/j.whugis20200153 |
|
[44] | 杜志强, 李钰, 张叶廷, 等. 自然灾害应急知识图谱构建方法研究[J]. 武汉大学学报·信息科学版, 2020, 45(9):1344-1355. |
[ Du Z Q, Li Y, Zhang Y T, et al. Knowledge graph construction method on natural disaster emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9):1344-1355. ] DOI:10.13203/j.whugis20200047
doi: 10.13203/j.whugis20200047 |
|
[45] | 陶坤旺, 赵阳阳, 朱鹏, 等. 面向一体化综合减灾的知识图谱构建方法[J]. 武汉大学学报·信息科学版, 2020, 45(8):1296-1302. |
[ Tao K W, Zhao Y Y, Zhu P, et al. Knowledge graph construction for integrated disaster reduction[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8):1296-1302. ] DOI:10.13203/j.whugis20200125
doi: 10.13203/j.whugis20200125 |
|
[46] |
赵红伟, 诸云强, 侯志伟, 等. 地理空间元数据关联网络的构建[J]. 地理科学, 2016, 36(8):1180-1189.
doi: 10.13249/j.cnki.sgs.2016.08.008 |
[ Zhao H W, Zhu Y Q, Hou Z W, et al. Construction of geospatial metadata association network[J]. Scientia Geographica Sinica, 2016, 36(8):1180-1189. ] DOI:10.13249/j.cnki.sgs.2016.08.008
doi: 10.13249/j.cnki.sgs.2016.08.008 |
|
[47] | Marc Wick, GeoNames Ontology[EB/OL]. www.geonames.org/ontology/documentation.html, 2021-07-25. |
[48] |
Ballatore A, Bertolotto M, Wilson D C. Geographic knowledge extraction and semantic similarity in OpenStreetMap[J]. Knowledge and Information Systems, 2013, 37(1):61-81. DOI: 10.1007/s10115-012-0571-0
doi: 10.1007/s10115-012-0571-0 |
[49] | 蒋秉川, 万刚, 许剑, 等. 多源异构数据的大规模地理知识图谱构建[J]. 测绘学报, 2018, 47(8):1051-1061. |
[ Jiang B C, Wan G, Xu J, et al. Geographic Knowledge Graph Building Extracted from Multi-sourced Heterogeneous Data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8):1051-1061. ] DOI: 10.11947/j.AGCS.2018.20180113
doi: 10.11947/j.AGCS.2018.20180113 |
|
[50] |
张洪岩, 周成虎, 闾国年, 等. 试论地学信息图谱思想的内涵与传承[J]. 地球信息科学学报, 2020, 22(4):653-661.
doi: 10.12082/dqxxkx.2020.200167 |
[ Zhang H Y, Zhou C H, Lv G N, et al. The connotation and inheritance of Geo-information Tupu[J]. Journal of Geo-information Science, 2020, 22(4):653-661. ] DOI:10.12082/dqxxkx.2020.200167
doi: 10.12082/dqxxkx.2020.200167 |
|
[51] |
Gruber T R. Toward principles for the design of ontologies used for knowledge sharing?[J]. International journal of human-computer studies, 1995, 43(5-6):907-928. DOI: 10.1006/ijhc.1995.1081
doi: 10.1006/ijhc.1995.1081 |
[52] | Noy N F, Mcguinness D L. Ontology development 101: A guide to creating your first ontology[R]. California, 2001. |
[53] |
Sun K, Zhu Y Q, Song J. Progress and challenges on entity alignment of geographic knowledge bases[J]. ISPRS International Journal of Geo-Information, 2019, 8(2):77-101. DOI:10.3390/ijgi8020077
doi: 10.3390/ijgi8020077 |
[54] |
Acheson E, Volpi M, Purves R S. Machine learning for cross-gazetteer matching of natural features[J]. International Journal of Geographical Information Science, 2020, 34(4):708-734. DOI:10.1080/13658816.2019.1599123
doi: 10.1080/13658816.2019.1599123 |
[55] |
Qiu Q J, Xie Z, Wu L, et al. BiLSTM-CRF for geological named entity recognition from the geoscience literature[J]. Earth Science Informatics, 2019, 12(4):565-579. DOI: 10.1007/s12145-019-00390-3
doi: 10.1007/s12145-019-00390-3 |
[56] |
Qiu Q J, Xie Z, Wu L, et al. Geoscience keyphrase extraction algorithm using enhanced word embedding[J]. Expert Systems with Applications, 2019, 125:157-169. DOI: 10.1016/J.ESWA.2019.02.001
doi: 10.1016/j.eswa.2019.02.001 |
[57] |
Wang C B, Ma X G, Chen J G, et al. Information extraction and knowledge graph construction from geoscience literature[J]. Computers & geosciences, 2018, 112:112-120. DOI:10.1016/j.cageo.2017.12.007
doi: 10.1016/j.cageo.2017.12.007 |
[58] |
Stephenson M H, Cheng Q M, Wang C S, et al. Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme[J]. Episodes, 2020, 43(4):1057-1062. DOI:10.18814/epiiugs/2020/020057
doi: 10.18814/epiiugs/2020/020057 |
[59] |
Wang C S, Hazen R M, Cheng Q M, et al. The deep-time digital earth program: Data-driven discovery in geosciences[J]. National Science Review, 2021, 8(9):nwab 027. DOI:10.1093/nsr/nwab027
doi: 10.1093/nsr/nwab027 |
[1] | 王益鹏, 张雪英, 党玉龙, 叶鹏. 顾及时空过程的台风灾害事件知识图谱表示方法[J]. 地球信息科学学报, 2023, 25(6): 1228-1239. |
[2] | 陆锋, 诸云强, 张雪英. 时空知识图谱研究进展与展望[J]. 地球信息科学学报, 2023, 25(6): 1091-1105. |
[3] | 尹文萍, 高宸, 樊辉, 谢菲, 张鑫. 一种融合文本中地理位置和土地利用/覆被信息的野生动物活动细粒度定位方法[J]. 地球信息科学学报, 2022, 24(7): 1363-1374. |
[4] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[5] | 刘馨蕊, 张伟峰. 基于多维多值概念格的矿山生产地学本体构建研究[J]. 地球信息科学学报, 2018, 20(2): 176-185. |
[6] | 许珺, 裴韬, 姚永慧. 地学知识图谱的定义、内涵和表达方式的探讨[J]. 地球信息科学学报, 2010, 12(4): 496-502,509. |
|