地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (4): 783-793.doi: 10.12082/dqxxkx.2023.220087
刘垚明1(), 李宛静1, 张修远2, 张宇恒1, 李然3, 周琪1,*(
)
收稿日期:
2022-03-02
修回日期:
2022-05-19
出版日期:
2023-04-25
发布日期:
2023-04-19
通讯作者:
*周琪(1984—),男,湖北武汉人,博士,副教授,研究方向为数据质量评价、数据挖掘与分析。 E-mail: zhouqi@cug.edu.cn作者简介:
刘垚明(1999—),男,河北承德人,硕士生,研究方向为数据挖掘与分析。E-mail: 20171001314@cug.edu.cn
基金资助:
LIU Yaoming1(), LI Wanjing1, ZHANG Xiuyuan2, ZHANG Yuheng1, LI Ran3, ZHOU Qi1,*(
)
Received:
2022-03-02
Revised:
2022-05-19
Online:
2023-04-25
Published:
2023-04-19
Contact:
ZHOU Qi
Supported by:
摘要:
农村可达指数(RAI)是联合国可持续发展目标(SDGs)的重要评估指标(SDG 9.1.1),用于衡量享受道路交通服务的农村人口比例,但是目前存在指标不全、范围有限、数据有偏和解释不足等问题。因此,本文基于1:25万道路数据、1:100万行政区划数据、100 m分辨率人口数据、城市建成区数据、高程数据和GDP数据六种全球或区域开放的地理空间数据,评估了全国2852个区县单元的RAI和NSRP(难以享受道路交通服务的农村人口)指标,并引入社会经济变量和地形变量理解这2个指标的空间格局。研究发现:① 虽然我国仍有485.3万难以享受道路交通服务的农村人口;但是享受道路交通服务的农村人口比例为99.5%,且该值远高于世界银行给出的评估结果(71.8%);② RAI和NSRP的空间格局均沿“胡焕庸线”呈两极化分布:“胡焕庸线”以东地区的RAI值较高、NSRP值较低;而“胡焕庸线”以西地区的RAI值较低、NSRP值较高;③ RAI和NSRP与社会经济和地形变量显著相关,且与地形变量的相关性更高,表明地形对2个指标空间格局影响显著。本研究首次在区县级尺度上揭示了我国农村交通服务的空间格局,可以为改善农村道路交通设施提供决策支持。
刘垚明, 李宛静, 张修远, 张宇恒, 李然, 周琪. 基于多源开放数据的中国农村可达指数评估[J]. 地球信息科学学报, 2023, 25(4): 783-793.DOI:10.12082/dqxxkx.2023.220087
LIU Yaoming, LI Wanjing, ZHANG Xiuyuan, ZHANG Yuheng, LI Ran, ZHOU Qi. Evaluating Rural Access Index across China with Multi-source Open Data[J]. Journal of Geo-information Science, 2023, 25(4): 783-793.DOI:10.12082/dqxxkx.2023.220087
[1] | UN. Transforming our world: The 2030 agenda for sustainable development[R]. New York: UN, 2015. |
[2] | 郭茹, 戴欣宇, 刘林京, 等. 可持续发展目标评价研究进展及中国实践[J]. 生态经济, 2022, 38(1):211-217. |
[Guo R, Dai X Y, Liu L J, et al. Research progress on assessment of Sustainable Development Goals and the practices of China[J]. Ecological Economy, 2022, 38(1):211-217.] | |
[3] | IAEG-SDGs. Global indicator framework for the Sustainable Development Goals and targets of the 2030 agenda for sustainable development[EB/OL]. available from: https://unstats.un.org/sgds/indicators/indicators-list/. |
[4] | UN General Assembly. Resolution adopted by the General Assembly on work of the statistical commission pertaining to the 2030 agenda for sustainable development[Z]. 2017. |
[5] | Roberts P, Kc S, Rastogi C. Rural access index: a key development indicator[R]. Washington D.C.: World Bank, 2006. |
[6] |
Jia Z, Wu M, Niu Z, et al. Monitoring of UN sustainable development goal SDG-9.1.1: Study of Algerian “Belt and Road” expressways constructed by China[J]. PeerJ, 2020, 8:e8953. DOI:10.7717/peerj.8953
doi: 10.7717/peerj.8953 |
[7] | 中共中央国务院印发《交通强国建设纲要》[N]. 人民日报,2019-9-20(004). |
[The Central Committee of the Communist Party and The State Council of China issued Outline of building a strong transportation country. People's Daily, 2019-9-20(004).] | |
[8] | Iimi A, Ahmed F, Anderson E C, et al. New rural access index: Main determinants and correlation to poverty[R]. World Bank Policy Research Working Paper, 2016. |
[9] | World Bank Group. Measuring rural access: using new technologies[M]. World Bank, 2016. |
[10] |
Workman R, McPherson K. Measuring rural access for SDG 9.1.1[J]. Transactions in GIS, 2021, 25(2):721-734. DOI:10.1111/tgis.12721
doi: 10.1111/tgis.12721 |
[11] |
Ilie C M, Brovelli M A, Coetzee S. Monitoring SDG9 with global open data and open software: A case study from rural Tanzania[C]. International Society for Photogrammetry and Remote Sensing, 2019, 42(2/W13):1551-1558. DOI:10.5194/isprs-archives-XLII-2-W13-1551-2019
doi: 10.5194/isprs-archives-XLII-2-W13-1551-2019 |
[12] |
Mugisha G. Rural roads and household wealth: The case of Uganda[D]. Leeds: The University of Leeds, 2019. DOI:10.13140/RG.2.2.26892.74882
doi: 10.13140/RG.2.2.26892.74882 |
[13] | Piloyan A, Gevorgyan A. Measuring Rural Accessibility in the GIS environment: Case study of Armenia[C]. Proceedings of the 7th International Conference on Cartography and GIS, Sozopol, Bulgaria. 2018:18-23. |
[14] | Mikou M, Rozenberg J, Koks E E, et al. Assessing rural accessibility and rural roads investment needs using open source data[R]. World Bank Policy Research Working Paper, 2019. |
[15] | 徐州, 林孝松, 朱荣, 等. 巫山县乡村地区公路网通达性空间格局研究[J]. 浙江大学学报(理学版), 2019, 46(4):511-520. |
[Xu Z, Lin X S, Zhu R, et al. Research on the spatial structure of rural highway accessibility in Wushan county[J]. Journal of Zhejiang University (Science Edition), 2019, 46(4):511-520.] DOI:10.3785/j.issn.1008-9497.2019.04.018
doi: 10.3785/j.issn.1008-9497.2019.04.018 |
|
[16] |
马雪莹, 邵景安, 徐新良. 基于熵权-TOPSI的山区乡镇通达性研究——以重庆市石柱县为例[J]. 地理科学进展, 2016(9):1144-1154.
doi: 10.18306/dlkxjz.2016.09.009 |
[Ma X Y, Shao J A, Xu X L. Rural transportation accessibility in mountainous areas based on the entropy-weight TOPSIS method: A case study of Shizhu county, Chongqing municipality[J]. Progress in Geography, 2016, 35(9):1144-1154.] DOI:10.18306/dlkx jz.2016.09.009
doi: 10.18306/dlkxjz.2016.09.009 |
|
[17] |
肖京格, 周廷刚, 姚林虎, 等. 重庆市交通网络的可达性时空特征及其演化规律[J]. 地球信息科学学报, 2015, 17(1):54-61.
doi: 10.3724/SP.J.1047.2015.00054 |
[Xiao J G, Zhou T G, Yao L H. Spatial-temporal characteristics of Chongqing transport network accessibility and its evolution pattern[J]. Journal of Geo-information Science, 2015, 17(1):54-61.] DOI:10.3724/SP.J.1047.2015.00054
doi: 10.3724/SP.J.1047.2015.00054 |
|
[18] | 罗雨, 李同昇, 王昭, 等. 乡村振兴视角下秦巴山区农村路网通达性评价与分区优化研究——以陕西省山阳县为例[J]. 人文地理, 2020, 35(3):104-114. |
[Luo Y, Li T S, Wang Z, et al. Assessment and zone optimization research on rural road network accessibility in Qin-Ba mountain areas from the perspective of rural revitalization: A case study of Shanyang county in Shanxi Province[J]. Human Geography, 2020, 35(3):104-114.] DOI:10.1 3959/j.issn.1003-2398.2020.03.012
doi: 10.1 3959/j.issn.1003-2398.2020.03.012 |
|
[19] |
Xu J, Bai J, Chen J. An improved indicator system for evaluating the progress of sustainable development goals (SDGs) sub-target 9.1 in county level[J]. Sustainability, 2019, 11(17):4783. DOI:10.3390/su11174783
doi: 10.3390/su11174783 |
[20] |
Zhou Q, Tian Y. The use of geometric indicators to estimate the quantitative completeness of street blocks in OpenStreetMap[J]. Transactions in GIS, 2018, 22(6):1550-1572. DOI:10.1111/tgis.12486
doi: 10.1111/tgis.12486 |
[21] |
Zhou Q, Lin H. Investigating the completeness and omission roads of OpenStreetMap data in Hubei, China by comparing with street map and street view[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020. DOI:10.48550/arXiv.1909.04323
doi: 10.48550/arXiv.1909.04323 |
[22] | Rice J A. Mathematical statistics and data analysis[M]. Boston: Cengage Learning, 2006. |
[23] |
Zhou Q, Lin H, Bao J Y. Spatial autoregressive analysis of nationwide street network patterns with global open data[J]. Environment and Planning B: Urban Analytics and City Science, 2021, 48(9):2743-2760. DOI:10.1177/2399808320987846
doi: 10.1177/2399808320987846 |
[24] |
Stevens F R, Gaughan A E, Linard C, et al. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data[J]. PLOS ONE, 2015, 10(2):e0107042. DOI:10.1371/journal.pone.0107042
doi: 10.1371/journal.pone.0107042 |
[25] |
Zhao M, Cheng C, Zhou Y, et al. A global dataset of annual urban extents (1992-2020) from harmonized nighttime lights[J]. Earth System Science Data, 2022, 14:517-534. DOI:10.5194/essd-2021-302
doi: 10.5194/essd-2021-302 |
[26] | Jarvis A., H.I. Reuter A. Nelson E. Guevara. Hole-filled seamless SRTM data V4[DB/OL], International Centre for Tropical Agriculture (CIAT), available from:https://srtm.csi.cgiar.org, 2018. |
[27] |
胡焕庸. 中国人口之分布——附统计表与密度图[J]. 地理学报, 1935, 2(2):33-74.
doi: 10.11821/xb193502002 |
[Hu H Y. The population distribution of China, with statistics and maps. Acta Geographica Sinica, 1935, 2(2):33-74.] | |
[28] | United Nations, Leaving No one behind: Equality and non-discrimination at the heart of sustainable development[EB/OL]. available from: https://unsceb.org/sites/default/files/imported_files/CEB%20equality%20framewor k-A4-web-rev3.pdf, 2017. |
[29] |
Zhang Y H, Zhou Q, Brovelli M A, et al. Assessing OSM building completeness using population data[J/OL]. International Journal of Geographical Information Science: 1-25[2022-02-09]. DOI:10.1080/13658816.2021.2023158
doi: 10.1080/13658816.2021.2023158 |
[30] |
Li Z, Zhou Q. Integration of linear and areal hierarchies for continuous multi-scale representation of road networks[J]. International Journal of Geographical Information Science, 2012, 26(5):855-880. DOI:10.1080/13658816.2011.616861
doi: 10.1080/13658816.2011.616861 |
[31] | IAEG-SDGS. Tier classification for global SDG indicators. New York: Interagency and Expert Group on SDG Indicators, 2021. |
[32] | 郭华东, 梁栋, 陈方, 等. 地球大数据促进联合国可持续发展目标实现[J]. 中国科学院院刊, 2021, 36(8):874-884. |
[Guo H D, Liang D, Chen F, et al. Big earth data facilitates Sustainable Development Goals[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8):874-88.4.] | |
[33] | Dobson J E, Bright E A, Coleman P R, et al. LandScan: A global population database for estimating populations at risk[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(7):849-857. |
[34] | Florczyk A, Corbane C, Schiavina M, et al. GHS Urban Centre Database 2015, multitemporal and multidimensional attributes[DB/OL]. European Commission, Joint Research Centre (JRC), available from: https://data.jrc.ec.europa.eu/dataset/53473144-b88c-44bc-b4a3-4583ed1f547e. |
[1] | 尚明, 任阳阳, 宋宏利, 姚亚楠, 白磊, 李悦, 马杰. IMERG和GSMaP对中国极端降水监测能力评估[J]. 地球信息科学学报, 2023, 25(9): 1813-1826. |
[2] | 李玉洁, 江洪, 刘宣广. 基于CatBoost的植被总初级生产力遥感模拟方法及在福建省的应用[J]. 地球信息科学学报, 2023, 25(9): 1908-1922. |
[3] | 杜晓婉, 陈曦, 郑宏伟, 刘英, 刘铁, 包安明, 胡萍. 一种降水降尺度模型:地形约束下的条件生成对抗网络[J]. 地球信息科学学报, 2023, 25(8): 1586-1600. |
[4] | 涂平, 林偲蔚, 周千千, 谢静, 范玉贵, 陈楠, 林伟斌, 郭连鹤. 顾及地形影响的火星地表天文辐射时空特征分析[J]. 地球信息科学学报, 2023, 25(8): 1611-1624. |
[5] | 董勇, 周亮, 高鸿, 王宝. 黄土高原地形破碎化探测及空间异质性分析[J]. 地球信息科学学报, 2023, 25(8): 1625-1636. |
[6] | 姚伟, 赵志远, 吴升. 厦门市公共出租汽车服务公平性[J]. 地球信息科学学报, 2023, 25(8): 1637-1654. |
[7] | 金广垠, 沙恒宇, 张金雷, 黄金才. 基于路段-路口联合建模的对偶图卷积网络的行程时间估计方法[J]. 地球信息科学学报, 2023, 25(7): 1500-1513. |
[8] | 罗永臻, 董春, 张玉. 人口空间化适宜格网评价方法研究[J]. 地球信息科学学报, 2023, 25(5): 896-908. |
[9] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[10] | 谢静, 陈楠, 林偲蔚. 基于地形音乐的地形定量分析与空间分异研究—以陕北黄土高原为例[J]. 地球信息科学学报, 2023, 25(5): 924-934. |
[11] | 万江琴, 费腾. 基于街景图像的“三生空间”识别方法研究[J]. 地球信息科学学报, 2023, 25(4): 838-851. |
[12] | 高顺祥, 陈珍, 张志健, 陈越, 肖中圣, 邓进, 许奇. 骑行替代步行后公共交通可达性改善效果评估方法[J]. 地球信息科学学报, 2023, 25(3): 439-449. |
[13] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[14] | 马力, 潘竟虎. 中国荒野地空间识别及时空演变[J]. 地球信息科学学报, 2023, 25(2): 324-339. |
[15] | 刘洋, 康健, 管海燕, 汪汉云. 基于双注意力残差网络的高分遥感影像道路提取模型[J]. 地球信息科学学报, 2023, 25(2): 396-408. |
|