地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (2): 380-395.doi: 10.12082/dqxxkx.2023.220197
收稿日期:
2022-04-18
修回日期:
2022-05-22
出版日期:
2023-02-25
发布日期:
2023-04-19
通讯作者:
*蓝朝桢(1979— ),男,福建上杭人,副教授,主要从事摄影测量学、遥感影像数字化智能处理研究。 E-mail: lan_cz@163.com作者简介:
王龙号(1996— ),男,山东济宁人,硕士,主要从事遥感影像数字处理研究。E-mail: 848832204@qq.com
基金资助:
WANG Longhao(), LAN Chaozhen(
), YAO Fushan, HOU Huitai, WU Beibei
Received:
2022-04-18
Revised:
2022-05-22
Online:
2023-02-25
Published:
2023-04-19
Contact:
LAN Chaozhen
Supported by:
摘要:
针对多源遥感影像之间成像机理不同、非线性光谱辐射畸变大以及灰度梯度差异明显等所导致的匹配困难问题,提出深度特征融合匹配算法(Feature Fusion Matching Algorithm, FFM)。① 通过构建特征图金字塔网络提取影像深度特征,使用特征连接结构将语义丰富的高层特征与定位精确的低层特征互补融合,解决多源影像同名特征难以表征的问题并提高特征向量的定位精度;② 对原始维度1/8的特征图进行交叉变换来融合自身邻域信息与待匹配影像特征信息,通过计算特征向量间的相似性得分得到初次匹配结果,针对特征稀疏区域,提出滑动窗口自适应得分阈值检测算法来提升匹配效果;③ 将匹配结果映射至亚像素级特征图,在小窗口内计算像素间的匹配概率分布期望值来检校优化匹配结果,提高匹配点对的准确性;④ 使用PROSAC算法对匹配结果进行提纯,有效剔除误匹配的同时最大限度保留正确匹配点。试验选取6对多源遥感影像,将FFM同SuperPoint、SIFT、ContextDesc以及LoFTR算法进行对比,结果表明FFM算法在匹配点正确率、匹配点均方根误差以及分布均匀度等方面远优于其他算法。将FFM匹配结果用于多源遥感影像配准,配准效果得到较高提升。
王龙号, 蓝朝桢, 姚富山, 侯慧太, 武蓓蓓. 多源遥感影像深度特征融合匹配算法[J]. 地球信息科学学报, 2023, 25(2): 380-395.DOI:10.12082/dqxxkx.2023.220197
WANG Longhao, LAN Chaozhen, YAO Fushan, HOU Huitai, WU Beibei. Multi-source Remote Sensing Image Deep Feature Fusion Matching Algorithm[J]. Journal of Geo-information Science, 2023, 25(2): 380-395.DOI:10.12082/dqxxkx.2023.220197
表1
试验数据对比分析
影像组别 | ||||||
---|---|---|---|---|---|---|
第1组 | 第2组 | 第3组 | 第4组 | 第5组 | 第6组 | |
基准影像 类型 | 无人机 光学影像 | ZY-3 PAN 全色影像 | Google 光学影像(夏) | Google 光学影像 | Google 光学影像 | Google 光学影像 |
图幅/像素 | 1920×1080 | 1000×1000 | 960×960 | 512×512 | 256×256 | 500×500 |
分辨率/m | - | 2.5 | 0.5 | 160 | 120 | 40 |
待匹配 影像类型 | 无人机 热红外影像 | GF-3 SAR | Google 光学影像(冬) | ZY-3 PAN 全色影像 | GF-2 PAN 全色影像 | OSM 栅格地图 |
图幅/像素 | 640×512 | 1000×1000 | 640×640 | 628×531 | 400×400 | 500×500 |
分辨率/m | - | 2.5 | 0.5 | 160 | 120 | 40 |
差异 | 可见光-热红外,成像模式与波段不同,角度、尺度差异大 | 光学-SAR,成像模式不同,灰度梯度差异大[ | 时相差异大,冬夏季地物差异明显,角度尺度差异明显 | 普通光学影像-全色影像,波段不同,灰度差异明显 | 普通光学影像-全色影像,波段不同,灰度差异明显 | 可见光-栅格地图,不同地图模式,灰度差异大[ |
表2
匹配试验结果对比
影像组别 | |||||||
---|---|---|---|---|---|---|---|
第1组 | 第2组 | 第3组 | 第4组 | 第5组 | 第6组 | ||
P/对 | SuperPoint | 56 | 4 | 76 | 94 | 10 | 2 |
ContextDesc | 27 | 0 | 17 | 107 | 39 | 0 | |
SIFT | 0 | 0 | 21 | 68 | 42 | 0 | |
LoFTR | 165 | 598 | 49 | 701 | 59 | 84 | |
FFM | 321 | 416 | 246 | 267 | 165 | 30 | |
MA/% | SuperPoint | 13.1 | 1.9 | 22.2 | 40.5 | 34.48 | 3.17 |
ContextDesc | 39 | 0 | 23.9 | 71.8 | 62.9 | 0 | |
SIFT | 0 | 0 | 6.1 | 20.0 | 45.65 | 0 | |
LoFTR | 21.02 | 53.35 | 22.48 | 70.67 | 32.96 | 92.3 | |
FFM | 94.1 | 71.6 | 54.91 | 63.4 | 93.2 | 23.8 | |
RMSE | SuperPoint | 5.3140 | 38.8776 | 3.3387 | 4.3474 | 10.4386 | - |
ContextDesc | 16.2799 | - | 8.3289 | 4.6065 | 10.729 | - | |
SIFT | - | - | 7.8878 | 4.551 | 8.53 | - | |
LoFTR | 7.4840 | 5.9680 | 4.3220 | 3.0455 | 4.85276 | 3.2743 | |
FFM | 2.9675 | 3.3287 | 1.3759 | 2.87 | 3.89 | 3.1744 | |
t | SuperPoint | 1.0 | 1.2 | 0.7 | 0.5 | 0.43 | 0.43 |
ContextDesc | 5.9 | 5.1 | 3.6 | 3.2 | 2 | 2.6 | |
SIFT | 5.1 | 5.1 | 3.1 | 3.2 | 1.5 | 2.5 | |
LoFTR | 1.3 | 1.5 | 1.1 | 1.0 | 0.8 | 0.9 | |
FFM | 1.4 | 1.7 | 1.2 | 1.5 | 1.1 | 1.1 |
[1] | 蓝朝桢, 卢万杰, 于君明, 等. 异源遥感影像特征匹配的深度学习算法[J]. 测绘学报, 2021, 50(2):189-202. |
[ Lu W J, Yu J M, et al. Deep learning algorithm for feature matching of cross modality remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):189-202. ] DOI:10.11947/j.AGCS.2021.20200048
doi: 10.11947/j.AGCS.2021.20200048 |
|
[2] | 李力, 纪松, 于英, 等. 一种基于组合特征的多源遥感影像配准方法[J]. 测绘科学技术学报, 2020, 37(1):74-78. |
[ Li L, Ji S, Yu Y, et al. A Multi-Feature-Based registration method adapted to Multi-Source remote sensing images[J]. Journal of Geomatics Science and Technology, 2020, 37(1):74-78. ] DOI:10.3969/j.issn.1673-6338.2020.01.014
doi: 10.3969/j.issn.1673-6338.2020.01.014 |
|
[3] |
Lowe D G. Object recognition from local scale-invariant features[C]// Proceedings of the seventh IEEE International Conference on Computer Vision. IEEE, 1999, 2:1150-1157. DOI:10.1109/ICCV.1999.790410
doi: 10.1109/ICCV.1999.790410 |
[4] |
Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative to SIFT or SURF[C]// 2011 International Conference on Computer Cision. IEEE, 2011:2564-2571. DOI:10.1109/ICCV.2011.6126544
doi: 10.1109/ICCV.2011.6126544 |
[5] |
Bay H, Tuytelaars T, Gool L V. Surf: Speeded up robust features[C]// European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2006:404-417. DOI:10.1007/11744023_32
doi: 10.1007/11744023_32 |
[6] | 姚永祥, 张永军, 万一, 等. 顾及各向异性加权力矩与绝对相位方向的异源影像匹配[J]. 武汉大学学报·信息科学版, 2021, 46(11):1727-1736. |
[ Yao Y X, Zhang Y J, Wan Y, et al. Heterologous images matching considering anisotropic weighted moment and absolute phase orientation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11):1727-1736. ] DOI:10.13203/j.whugis20200702
doi: 10.13203/j.whugis20200702 |
|
[7] |
Noh H, Araujo A, Sim J, et al. Large-scale image retrieval with attentive deep local features[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:3456-3465. DOI:10.48550/arXiv.1612.06321
doi: 10.48550/arXiv.1612.06321 |
[8] |
DeTone D, Malisiewicz T, Rabinovich A. Superpoint: Self-supervised interest point detection and description[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018:224-236. DOI:10.48550/arXiv.1712.07629
doi: 10.48550/arXiv.1712.07629 |
[9] |
Sarlin P E, DeTone D, Malisiewicz T, et al. Superglue: Learning feature matching with graph neural networks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:4938-4947. DOI:10.1109/CVPR42600.2020.00499
doi: 10.1109/CVPR42600.2020.00499 |
[10] |
Sun J, Shen Z, Wang Y, et al. LoFTR: Detector-free local feature matching with transformers[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:8922-8931. DOI:10.48550/arXiv.2104.00680
doi: 10.48550/arXiv.2104.00680 |
[11] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2117- 2125. DOI:10.1109/CVPR.2017.106
doi: 10.1109/CVPR.2017.106 |
[12] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778. DOI:10.1109/CVPR.2016.90
doi: 10.1109/CVPR.2016.90 |
[13] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all You need[C]// NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010. DOI:10.48550/arXiv.1706.03762
doi: 10.48550/arXiv.1706.03762 |
[14] |
Katharopoulos A, Vyas A, Pappas N, et al. Transformers are rnns: Fast autoregressive transformers with linear attention[C]// International Conference on Machine Learning. PMLR, 2020:5156-5165. DOI:10.48550/arXiv.2006.16236
doi: 10.48550/arXiv.2006.16236 |
[15] |
Peyré G, Cuturi M. Computational optimal transport: With applications to data science[J]. Foundations and Trends® in Machine Learning, 2019, 11(5/6):355-607. DOI:10.48550/arXiv.1803.00567
doi: 10.48550/arXiv.1803.00567 |
[16] |
Cuturi M. Sinkhorn distances: Lightspeed computation of optimal transport[C]// NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. 2013:2292-2300. DOI:10.48550/arXiv.1306.0895
doi: 10.48550/arXiv.1306.0895 |
[17] |
Wang Q, Zhou X, Hariharan B, et al. Learning feature descriptors using camera pose supervision[M]//Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020:757-774. DOI:10.1007/978-3-030-58452-8_44
doi: 10.1007/978-3-030-58452-8_44 |
[18] |
Chum O, Matas J. Matching with PROSAC-progressive sample consensus[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE, 2005: 220-226. DOI:10.1109/CVPR.2005.221
doi: 10.1109/CVPR.2005.221 |
[19] |
Li Z Q, Snavely N. MegaDepth: learning single-view depth prediction from Internet photos[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:2041-2050. 2050. DOI:10.1109/CVPR.2018.00218
doi: 10.1109/CVPR.2018.00218 |
[20] | 崔志祥, 蓝朝桢, 熊新, 等. 一种无人机热红外与可见光影像匹配方法[J]. 测绘科学技术学报, 2019, 36(6):609-613. |
[ Cui Z X, Lan C Z, Xiong X, et al. A method for matching between UAV thermal infrared images and optical images[J]. Journal of Geomatics Science and Technology, 2019, 36(6):609-613. ] DOI:10.3969/j.issn.1673-6338.2019.06.011
doi: 10.3969/j.issn.1673-6338.2019.06.011 |
|
[21] | 满孝成, 姚国标, 张传辉, 等. 融合多类特征的海岸带特殊纹理影像全自动配准[J]. 测绘科学, 2020, 45(8):130-137. |
[ Man X C, Yao G B, Zhang C H, et al. Fully automatic registration of coastal zone special texture images with multi-class features[J]. Science of Surveying and Mapping, 2020, 45(8):130-137. ] DOI:10.16251/j.cnki.1009-2 307.2020.08.020
doi: 10.16251/j.cnki.1009-2 307.2020.08.020 |
|
[22] | 朱海峰, 赵春晖. 图像特征点分布均匀性的评价方法[J]. 大庆师范学院学报, 2010, 30(3):9-12. |
[ Zhu H F, Zhao C H. An Evaluation Method for the uniformity of image feature point distribution[J]. Journal of Daqing Normal University, 2010, 30(3):9-12. ] DOI:10.3969/j.issn.2095-0063.2010.03.002
doi: 10.3969/j.issn.2095-0063.2010.03.002 |
|
[23] |
Luo Z X, Shen T W, Zhou L, et al. ContextDesc: Local descriptor augmentation with cross-modality context[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019:2522-2531. DOI:10.1109/CVPR.2019.00263
doi: 10.1109/CVPR.2019.00263 |
[1] | 张俊瑶, 杨晓梅, 王志华, 杨海坤, 张博淳, 万庆, 雷梅. 绿色发展理念视角下内蒙古煤矿区格局演变分析[J]. 地球信息科学学报, 2023, 25(8): 1655-1668. |
[2] | 张昆, 王涛, 张艳, 郑迎辉, 赵祥, 李芳芳. 一种基于面阵摆扫式航空影像的特征匹配方法[J]. 地球信息科学学报, 2022, 24(3): 522-532. |
[3] | 孙嘉玉,左正康,孙逸渊,SanaUllah,张瑞华,赵海盟. 基于动态极坐标参数化的遥感影像匹配方法[J]. 地球信息科学学报, 2019, 21(10): 1586-1593. |
[4] | 刘帅, 陈军, 孙敏, 赵伶俐. 球形全景影像核线方程推导及其应用[J]. 地球信息科学学报, 2015, 17(3): 274-280. |
[5] | 颜安, 蒋平安, 武红旗, 马黎春. 罗布泊“大耳朵”地区多源遥感影像数据库的设计与实现[J]. 地球信息科学学报, 2009, 11(2): 250-255. |
|