地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (2): 409-420.doi: 10.12082/dqxxkx.2023.220483
收稿日期:
2022-07-06
修回日期:
2022-10-16
出版日期:
2023-02-25
发布日期:
2023-04-19
通讯作者:
*黄洪宇(1971— ),男,福建莆田人,助理研究员,主要从事激光雷达和影像三维数据获取和分析研究。 E-mail: hhy1@fzu.edu.cn作者简介:
焦怀瑾(1999— ),男,江西吉安人,硕士研究生,主要从事地学可视化与虚拟地理环境研究。E-mail: huai_jin@foxmail.com
基金资助:
JIAO Huaijin1,2(), CHEN Chongcheng1,2, HUANG Hongyu1,2,*(
)
Received:
2022-07-06
Revised:
2022-10-16
Online:
2023-02-25
Published:
2023-04-19
Contact:
HUANG Hongyu
Supported by:
摘要:
星载激光雷达ICESat-2和GEDI可以为数字高程模型产品的精度评价与修正提供全球覆盖的、可靠的高精度参考数据源。然而,现有的DEM修正方法主要是针对DEM误差中的植被高信号且多采用线性回归模型。为此,本文分析了ASTER GDEM v3精度与土地覆盖类型、高程、坡度、起伏度及植被覆盖率的关系。在此基础上,提出了一种考虑上述多种精度影响因素并结合XGBoost和空间插值的DEM误差修正方法。结果分析表明:原始ASTER GDEM的误差整体呈正态分布,平均误差为-3.463 m,存在较大负偏差,高程精度随着高程、坡度、起伏度及植被覆盖率VCF的增大呈降低趋势;经过修正后, ASTER GDEM平均误差降低到了-0.233 m,负偏差得到有效改善,整体平均绝对误差降低了26.04%,整体均方差降低了23.56%,耕地、林地、草地、湿地、水域及人造地表的DEM平均绝对误差和均方差都有不同程度的降低;本文提出的方法对多种特征要素与地形误差间的非线性关系进行拟合建模,在研究区取得了较好的修正效果。
焦怀瑾, 陈崇成, 黄洪宇. 结合ICESat-2和GEDI的中国东南丘陵地区ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2023, 25(2): 409-420.DOI:10.12082/dqxxkx.2023.220483
JIAO Huaijin, CHEN Chongcheng, HUANG Hongyu. Elevation Accuracy Evaluation and Correction of ASTER GDEM in China Southeast Hilly Region by Combining ICESat-2 and GEDI data[J]. Journal of Geo-information Science, 2023, 25(2): 409-420.DOI:10.12082/dqxxkx.2023.220483
表4
不同土地覆盖类型下的DEM数据在修正前后的精度
土地覆盖类型 | ME/m | MAE/m | RMSE/m | |||||
---|---|---|---|---|---|---|---|---|
修正前 | 修正后 | 修正前 | 修正后 | 修正前 | 修正后 | |||
耕地 | -0.435 | -0.333 | 9.748 | 6.827 | 12.820 | 9.320 | ||
林地 | -4.344 | -0.349 | 14.077 | 10.597 | 17.866 | 13.712 | ||
草地 | -2.464 | 0.956 | 12.837 | 10.167 | 16.510 | 13.590 | ||
湿地 | -4.232 | -1.147 | 6.275 | 2.634 | 7.728 | 4.331 | ||
水域 | -3.560 | -0.223 | 8.095 | 3.043 | 11.023 | 5.179 | ||
人造地表 | 0.738 | -0.124 | 8.445 | 5.778 | 10.973 | 7.636 |
[1] | 汤国安, 那嘉明, 程维明. 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 2017, 46(10):1570-1591. |
[ Tang G A, Na J M, Cheng W M. Progress of digital terrain analysis on regional geomorphology in China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1570-1591. ] DOI:10.11947/j.AGCS.2017.20170388
doi: 10.11947/j.AGCS.2017.20170388 |
|
[2] |
Laurence H, Peter U, Luntadila P, et al. A 30 m global map of elevation with forests and buildings removed[J]. Environmental Research Letters, 2022, 17(2):024016. DOI:10.1088/1748-9326/ac4d4f
doi: 10.1088/1748-9326/ac4d4f |
[3] |
张海平, 汤国安, 熊礼阳, 等. 面向地貌学本源的DEM增值理论框架与构建方法[J]. 地理学报, 2022, 77(3):518-533.
doi: 10.11821/dlxb202203002 |
[ Zhang H P, Tang G A, Xiong L Y, et al. Geomorphology-oriented theoretical framework and construction method for value-added DEM[J]. Acta Geographica Sinica, 2022, 77(3):518-533. ] DOI:10.11821/dlxb202203002
doi: 10.11821/dlxb202203002 |
|
[4] |
Neumann T A, Martino A J, Markus T, et al. The Ice, Cloud, and Land Elevation Satellite - 2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System[J]. Remote Sensing of Environment, 2019, 233:111325. DOI:10.1016/j.rse.2019.111325
doi: 10.1016/j.rse.2019.111325 |
[5] |
Quirós E, Polo M E, Fragoso-Campón L. GEDI elevation accuracy assessment: A case study of southwest Spain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14:5285-5299. DOI:10.1109/JSTARS.2021.3080711
doi: 10.1109/JSTARS.2021.3080711 |
[6] |
Liu X Q, Su Y J, Hu T Y, et al. Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data[J]. Remote Sensing of Environment, 2022, 269:112844. DOI:10.1016/j.rse.2021.112844
doi: 10.1016/j.rse.2021.112844 |
[7] |
Neuenschwander A, Guenther E, White J C, et al. Validation of ICESat-2 terrain and canopy heights in boreal forests[J]. Remote Sensing of Environment, 2020, 251:112110. DOI:10.1016/j.rse.2020.112110
doi: 10.1016/j.rse.2020.112110 |
[8] |
郑迎辉, 张艳, 王涛, 等. 基于ICESat-2数据的高程控制点提取和精度验证[J]. 地球信息科学学报, 2022, 24(7):1234-1244.
doi: 10.12082/dqxxkx.2022.210667 |
[ Zheng Y H, Zhang Y, Wang T, et al. Elevation control points extraction and accuracy validation based on ICESat-2 data[J]. Journal of Geo-information Science, 2022, 24(7):1234-1244. ] DOI:10.12082/dqxxkx.2022.210667
doi: 10.12082/dqxxkx.2022.210667 |
|
[9] |
Tian X X, Shan J. Comprehensive evaluation of the ICESat-2 ATL08 terrain product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10):8195-8209. DOI:10.1109/TGRS.2021.3051086
doi: 10.1109/TGRS.2021.3051086 |
[10] |
Liu A B, Cheng X, Chen Z Q. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals[J]. Remote Sensing of Environment, 2021, 264:112571. DOI:10.1016/j.rse.2021.112571
doi: 10.1016/j.rse.2021.112571 |
[11] |
Adam M, Urbazaev M, Dubois C, et al. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: Influence of environmental and acquisition parameters[J]. Remote Sensing, 2020, 12(23):3948. DOI:10.3390/rs12233948
doi: 10.3390/rs12233948 |
[12] |
Gallant J C, Read A M, Dowling T I. Removal of tree offsets from srtm and other digital surface models[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B4:275-280. DOI:10.5194/isprsarchives-xxxix-b4-275-2012
doi: 10.5194/isprsarchives-xxxix-b4-275-2012 |
[13] |
Baugh C A, Bates P D, Schumann G, et al. SRTM vegetation removal and hydrodynamic modeling accuracy[J]. Water Resources Research, 2013, 49(9):5276-5289. DOI:10.1002/wrcr.20412
doi: 10.1002/wrcr.20412 |
[14] |
Tan P Y, Zhu J J, Fu H Q, et al. Sub-canopy topography estimation from TanDEM-X DEM by fusing ALOS-2 PARSAR-2 InSAR coherence and GEDI data[J]. Sensors (Basel, Switzerland), 2020, 20(24): 7304. DOI:10.3390/s20247304
doi: 10.3390/s20247304 |
[15] | 张晨, 朱建军, 付海强. 基于ICESat-2数据及TanDEM-X DEM的林下地形反演[J]. 测绘工程, 2021, 30(1):60-65. |
[ Zhang C, Zhu J J, Fu H Q. Sub-canopy topography inversion based on ICESat-2 and TanDEM-X DEM[J]. Engineering of Surveying and Mapping, 2021, 30(1):60-65. ] DOI:10.19349/j.cnki.issn1006-7949.2021.01.010
doi: 10.19349/j.cnki.issn1006-7949.2021.01.010 |
|
[16] | 杜小平, 郭华东, 范湘涛, 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J]. 地球科学, 2013, 38(4):887-897. |
[ Du X P, Guo H D, Fan X T, et al. Vertical accuracy assessment of SRTM and ASTER GDEM over typical regions of China using ICESat/GLAS[J]. Earth Science, 2013, 38(4):887-897. ] DOI:10.3799/dqkx.2013.087
doi: 10.3799/dqkx.2013.087 |
|
[17] |
Su Y J, Guo Q H, Ma Q, et al. SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. Remote Sensing, 2015, 7(9):11202-11225. DOI:10.3390/rs70911202
doi: 10.3390/rs70911202 |
[18] |
秦臣臣, 陈传法, 杨娜, 等. 基于ICESat/GLAS的山东省SRTM与ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2020, 22(3):351-360.
doi: 10.12082/dqxxkx.2020.190411 |
[ Qin C C, Chen C F, Yang N, et al. Elevation accuracy evaluation and correction of SRTM and ASTER GDEM in Shandong Province based on ICESat/GLAS[J]. Journal of Geo-Information Science, 2020, 22(3):351-360. ] DOI:10.12082/dqxxkx.2020.190411
doi: 10.12082/dqxxkx.2020.190411 |
|
[19] |
Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. New York: ACM, 2016:785-794. DOI:10.1145/2939672.2939785
doi: 10.1145/2939672.2939785 |
[20] | 唐新明, 李世金, 李涛, 等. 全球数字高程产品概述[J]. 遥感学报, 2021, 25(1):167-181. |
[ Tang X M, Li S J, Li T, et al. Review on global digital elevation products[J]. National Remote Sensing Bulletin, 2021, 25(1):167-181. ] DOI:10.11834/jrs.20210210
doi: 10.11834/jrs.20210210 |
|
[21] | NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER science team. ASTER global digital elevation model v003[DB/OL]. https://lpdaac.usgs.gov/products/ast gtmv003,2019. |
[22] | 朱笑笑, 王成, 习晓环, 等. ICESat-2星载光子计数激光雷达数据处理与应用研究进展[J]. 红外与激光工程, 2020, 49(11):76-85. |
Wang C, Xi X H, et al. Research progress of ICESat-2/ATLAS data processing and applications[J]. Infrared and Laser Engineering, 2020, 49(11):76-85. ] DOI:10.3788/IRLA20200259
doi: 10.3788/IRLA20200259 |
|
[23] | Neuenschwander A L, Pitts K L, Jelley B P, et al. ATLAS/ICESat-2 L3A land and vegetation height, version 4[DB/OL]. https://nsidc.org/data/atl08/versions/4, 2021. |
[24] | Neumann T A, Brenner A, Hancock D, Robbins J, et al. ATLAS/ICESat-2 L2A global geolocated photon data, version 4[DB/OL]. https://nsidc.org/data/atl03/versions/4, 2021. |
[25] | Dubayah R, Hofton M, Blair J, Armston J, et al. GEDI L2A elevation and height metrics data global footprint Level v001[DB/OL]. https://lpdaac.usgs.gov/products/gedi02_av001, 2020. |
[26] | 林晓娟. 基于ICESat-2和GEDI森林冠层高度和森林地上生物量遥感诊断[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021. |
[ Lin X J, Remote sensing diagnosis of forest canopy height and forest aboveground biomass based on ICESat-2 and GEDI[D]. Beijing: Aerospace Information Research Institute, Chinese Academy of Sciences, 2021. ] | |
[27] |
Chen J, Ban Y F, Li S N. China: Open access to earth land-cover map[J]. Nature, 2014, 514(7523):434-434. DOI:10.1038/514434c
doi: 10.1038/514434c |
[28] | Townshend J. Global Forest Cover Change (GFCC) tree cover multi-year global 30 m v003[DB/OL]. https://lpdaac.usgs.gov/products/gfcc30tcv003, 2016. |
[29] |
Sexton J O, Song X P, Feng M, et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error[J]. International Journal of Digital Earth, 2013, 6(5):427-448. DOI:10.1080/17538947.2013.786146
doi: 10.1080/17538947.2013.786146 |
[30] |
Magruder L, Neuenschwander A, Klotz B. Digital terrain model elevation corrections using space-based imagery and ICESat-2 laser altimetry[J]. Remote Sensing of Environment, 2021, 264:112621. DOI:10.1016/j.rse.2021.112621
doi: 10.1016/j.rse.2021.112621 |
[31] |
Huang X D, Xie H J, Liang T G, et al. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau[J]. International Journal of Remote Sensing, 2011, 32(18):5177-5196. DOI:10.1080/01431161.2010.495092
doi: 10.1080/01431161.2010.495092 |
[32] |
Zhang H, Bauters M, Boeckx P, et al. Mapping canopy heights in dense tropical forests using low-cost UAV-derived photogrammetric point clouds and machine learning approaches[J]. Remote Sensing, 2021, 13(18):3777. DOI:10.3390/rs13183777
doi: 10.3390/rs13183777 |
[1] | 戴泽源, 张立华, 张林, 刘翔, 周寅飞, 陈秋. 适用于海岛的ICESat-2高程控制点提取方法[J]. 地球信息科学学报, 2023, 25(8): 1559-1569. |
[2] | 贝祎轩, 陈传法, 王鑫, 孙延宁, 何青鑫, 李坤禹. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276. |
[3] | 郑迎辉, 张艳, 王涛, 赵祥, 张昆, 王龙辉. 基于ICESat-2数据的高程控制点提取和精度验证[J]. 地球信息科学学报, 2022, 24(7): 1234-1244. |
[4] | 单宝艳, 张巧, 任启新, 樊文平, 吕永强. 基于局地气候分区的济南市热环境空间分异及其 影响因素[J]. 地球信息科学学报, 2022, 24(4): 711-722. |
[5] | 李晴烁, 柯长青, 张杰, 范宇宾, 沈校熠. 基于ICESat和ICESat-2激光测高数据估算2003—2019年格陵兰冰盖物质平衡[J]. 地球信息科学学报, 2022, 24(3): 558-571. |
[6] | 杨灿灿, 许芳年, 江岭, 王瑞璠, 尹力, 赵明伟, 张鲜鲜. 基于街景影像的城市道路空间舒适度研究[J]. 地球信息科学学报, 2021, 23(5): 785-801. |
[7] | 陆大进, 黎东, 朱笑笑, 聂胜, 周国清, 张兴忆, 杨超. 基于卷积神经网络的ICESat-2光子点云去噪分类[J]. 地球信息科学学报, 2021, 23(11): 2086-2095. |
[8] | 刘明杰, 徐卓揆, 郜允兵, 杨晶, 潘瑜春, 高秉博, 周艳兵, 周万鹏, 王凌. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020, 22(9): 1799-1813. |
[9] | 秦臣臣, 陈传法, 杨娜, 高原, 王梦樱. 基于ICESat/GLAS的山东省SRTM与ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2020, 22(3): 351-360. |
[10] | 赵尚民, 程维明, 蒋经天, 沙文娟. 资源三号卫星DEM数据与全球开放DEM数据的误差对比[J]. 地球信息科学学报, 2020, 22(3): 370-378. |
[11] | 王兴,康俊锋,刘学军,王美珍,张超. 设施农业典型地物改进Faster R-CNN识别方法[J]. 地球信息科学学报, 2019, 21(9): 1444-1454. |
[12] | 张丽丽, 赵明伟, 赵娜, 岳天祥. 基于OCO-2卫星观测模拟高精度XCO2的空间分布[J]. 地球信息科学学报, 2018, 20(9): 1316-1326. |
[13] | 崔晓临, 程贇, 张露, 卫晓庆. 基于DEM修正的MODIS地表温度产品空间插值[J]. 地球信息科学学报, 2018, 20(12): 1768-1776. |
[14] | 王金传, 谭喜成, 王召海, 钟燕飞, 董华萍, 周松涛, 成布怡. 基于Faster R-CNN深度网络的遥感影像目标识别 方法研究[J]. 地球信息科学学报, 2018, 20(10): 1500-1508. |
[15] | 武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017, 19(8): 1108-1115. |
|