地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (2): 265-276.doi: 10.12082/dqxxkx.2023.220486
贝祎轩1(), 陈传法1,*(
), 王鑫1, 孙延宁2, 何青鑫1, 李坤禹1
收稿日期:
2022-07-07
修回日期:
2022-08-24
出版日期:
2023-02-25
发布日期:
2023-04-19
通讯作者:
*陈传法(1982— ),男,山东淄博人,教授,主要从事数字地形建模、激光雷达点云数据处理等研究。 E-mail: chencf@Ireis.ac.cn作者简介:
贝祎轩(1997— ),女,山东淄博人,硕士生,主要从事数字地形建模研究。E-mail: TGK_Conch@163.com
基金资助:
BEI Yixuan1(), CHEN Chuanfa1,*(
), WANG Xin1, SUN Yanning2, HE Qingxin1, LI Kunyu1
Received:
2022-07-07
Revised:
2022-08-24
Online:
2023-02-25
Published:
2023-04-19
Contact:
CHEN Chuanfa
Supported by:
摘要:
机载LiDAR点云是获取高质量数字高程模型(Digital Elevation Model, DEM)的主要数据源,而地表粗糙度作为DEM的主要派生产品,在地学研究中发挥了重要作用,但点云密度和插值方法对DEM及地表粗糙度精度影响程度并没有明确结论。为此,本文利用不同地形条件下的林区机载LiDAR点云为实验对象,将原始点云随机缩减为不同的采样密度,利用5种常用插值方法(克里金(Ordinary Kriging, OK),径向基函数(Radial Basis Function, RBF),不规则三角网(Triangulated Irregular Network, TIN),自然邻域(Natural Neighbor, NN)和反距离加权(Inverse Distance Weighting, IDW))构建各个测区不同采样密度条件下的DEM,并通过空间特征和统计特征两方面对DEM及其地表粗糙度精度分析。结果表明:① DEM插值算法的精度随点云密度缩减而降低,且数据量缩减至原始数据量的30%后,不同算法精度区别较为明显,其中,RBF和OK精度最优,IDW精度最低;② DEM误差与地表粗糙度存在正相关,随数据密度降低,OK、RBF、IDW所得粗糙度与DEM误差的相关系数均降低,与TIN和NN的相关系数先降低后在30%处升高;③ 从插值生成的DEM中提取地表粗糙度,其误差随数据密度缩减而增大,其中IDW所得粗糙度的精度在密度为90%和70%时最高,而数据密度缩减至50%后,RBF能够更准确地捕捉到地形变化。
贝祎轩, 陈传法, 王鑫, 孙延宁, 何青鑫, 李坤禹. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276.DOI:10.12082/dqxxkx.2023.220486
BEI Yixuan, CHEN Chuanfa, WANG Xin, SUN Yanning, HE Qingxin, LI Kunyu. Effects of Airborne LiDAR Point Cloud Density and Interpolation Methods on the Accuracy of DEM and Surface Roughness[J]. Journal of Geo-information Science, 2023, 25(2): 265-276.DOI:10.12082/dqxxkx.2023.220486
表5
各种算法所得地表粗糙度RMSE
试验区域 | 数据密度/% | RMSE | ||||
---|---|---|---|---|---|---|
OK | RBF | TIN | NN | IDW | ||
Samp1 | 90 | 0.168 | 0.167 | 0.168 | 0.172 | 0.154 |
70 | 0.169 | 0.167 | 0.169 | 0.178 | 0.158 | |
50 | 0.169 | 0.169 | 0.173 | 0.189 | 0.169 | |
30 | 0.178 | 0.175 | 0.198 | 0.208 | 0.188 | |
10 | 0.197 | 0.190 | 0.258 | 0.258 | 0.221 | |
Samp2 | 90 | 0.243 | 0.241 | 0.245 | 0.247 | 0.231 |
70 | 0.245 | 0.242 | 0.246 | 0.248 | 0.237 | |
50 | 0.250 | 0.247 | 0.250 | 0.255 | 0.251 | |
30 | 0.258 | 0.254 | 0.269 | 0.311 | 0.278 | |
10 | 0.280 | 0.271 | 0.664 | 0.554 | 0.323 | |
Samp3 | 90 | 0.133 | 0.133 | 0.136 | 0.143 | 0.130 |
70 | 0.134 | 0.134 | 0.134 | 0.144 | 0.133 | |
50 | 0.136 | 0.136 | 0.138 | 0.136 | 0.137 | |
30 | 0.141 | 0.139 | 0.149 | 0.150 | 0.148 | |
10 | 0.152 | 0.148 | 0.202 | 0.211 | 0.167 |
[1] |
Chen C F, Yue T X, Li Y Y. A high speed method of SMTS[J]. Computers & Geosciences, 2012, 41:64-71. DOI:10.1 016/j.cageo.2011.08.012
doi: 10.1 016/j.cageo.2011.08.012 |
[2] |
Chen C F, Fan Z M, Yue T X, et al. A robust estimator for the accuracy assessment of remote-sensing-derived DEMs[J]. International Journal of Remote Sensing, 2012, 33(8):2482-2497. DOI:10.1080/01431161.2011.615766
doi: 10.1080/01431161.2011.615766 |
[3] | 李振洪, 李鹏, 丁咚, 等. 全球高分辨率数字高程模型研究进展与展望[J]. 武汉大学学报·信息科学版, 2018, 43(12):1927-1942. |
[ Li Z H, Li P, Ding D, et al. Research progress of global high resolution digital elevation models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1927-1942. ] DOI:10.13203/j.whugis20180295
doi: 10.13203/j.whugis20180295 |
|
[4] |
Hancock G R, Martinez C, Evans K G, et al. A comparison of SRTM and high-resolution digital elevation models and their use in catchment geomorphology and hydrology: Australian examples[J]. Earth Surface Processes and Landforms, 2006, 31(11):1394-1412.
doi: 10.1002/esp.1335 |
[5] |
Jafarzadegan K, Merwade V. A DEM-based approach for large-scale floodplain mapping in ungauged watersheds[J]. Journal of Hydrology, 2017, 550:650-662. DOI:10.1016/j.jhydrol.2017.04.053
doi: 10.1016/j.jhydrol.2017.04.053 |
[6] | 曹伟, 陈动, 史玉峰, 等. 激光雷达点云树木建模研究进展与展望[J]. 武汉大学学报·信息科学版, 2021, 46(2):203-220. |
[ Cao W, Chen D, Shi Y F, et al. Progress and prospect of LiDAR point clouds to 3D tree models[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2):203-220. ] DOI:10.13203/j.whugis20190275
doi: 10.13203/j.whugis20190275 |
|
[7] | 陈传法, 王梦樱, 杨帅, 等. 适用于林区机载LiDAR点云的多分辨率层次插值滤波方法[J]. 山东科技大学学报(自然科学版), 2021, 40(2):12-20. |
[ Wang M Y, Yang S, et al. A multi-resolution hierarchical interpolation-based filtering method for airborne LiDAR point clouds in forest areas[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(2):12-20. ] DOI:10.16452/j.cnki.sdkjzk.2021.02.002
doi: 10.16452/j.cnki.sdkjzk.2021.02.002 |
|
[8] |
Carlos A, Jerzy W, Francisco L, et al. Laser-scanner used in a wind tunnel to quantify soil erosion[J]. International Agrophysics, 2019, 33(2):227-232.
doi: 10.31545/intagr/109424 |
[9] | Guo Qinghua Li Wenkai Yu Hong Alvarez Otto. Effects of topographic variability and lidar sampling density on several DEM interpolation methods[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(6):701-712. |
[10] |
Anderson E S, Thompson J A, Crouse D A, et al. Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM[J]. Geoderma, 2006, 132(3/4):406-415. DOI:10.1016/j.geoderma.2005.06.004
doi: 10.1016/j.geoderma.2005.06.004 |
[11] |
Liu X Y, Zhang Z Y. Effects of LiDAR data reduction and breaklines on the accuracy of digital elevation model[J]. Survey Review, 2011, 43(323):614-628. DOI:10.1179/003962611X13117748892317
doi: 10.1179/003962611X13117748892317 |
[12] | Asal F F. Evaluating the effects of reductions in lidar data on the visual and statistical characteristics of the created digital elevation models[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, III-2:91-98. |
[13] |
Aguilar F, Agüera F, M A A, et al. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(7):805-816. DOI:10.14358/PERS.71.7.805
doi: 10.14358/PERS.71.7.805 |
[14] |
Agüera-Vega F, Agüera-Puntas M, Martínez-Carricondo P, et al. Effects of point cloud density, interpolation method and grid size on derived Digital Terrain Model accuracy at micro topography level[J]. International Journal of Remote Sensing, 2020, 41(21):8281-8299. DOI:10.1080/01431161.2020.1771788
doi: 10.1080/01431161.2020.1771788 |
[15] |
赵明伟, 汤国安, 田剑. AMMI模型的DEM内插方法不确定性研究[J]. 地球信息科学学报, 2012, 14(1):62-66.
doi: 10.3724/SP.J.1047.2012.00062 |
[ Zhao M W, Tang G A, Tian J. Uncertainty analysis of different DEM interpolation methods based on AMMI model[J]. Journal of Geo-information Science, 2012, 14(1):62-66. ]
doi: 10.3724/SP.J.1047.2012.00062 |
|
[16] |
Smith M W. Roughness in the earth sciences[J]. Earth-Science Reviews, 2014, 136:202-225. DOI:10.1016/j.earscirev.2014.05.016
doi: 10.1016/j.earscirev.2014.05.016 |
[17] |
Chen C F, Liu F Y, Li Y Y, et al. A robust interpolation method for constructing digital elevation models from remote sensing data[J]. Geomorphology, 2016, 268:275-287. DOI:10.1016/j.geomorph.2016.06.025
doi: 10.1016/j.geomorph.2016.06.025 |
[18] |
Korzeniowska K, Pfeifer N, Landtwing S. Mapping gullies, dunes, lava fields, and landslides via surface roughness[J]. Geomorphology, 2018, 301:53-67. DOI:10.1016/j.geomorph.2017.10.011
doi: 10.1016/j.geomorph.2017.10.011 |
[19] |
Syzdykbayev M, Karimi B, Karimi H A. Persistent homology on LiDAR data to detect landslides[J]. Remote Sensing of Environment, 2020, 246:111816. DOI:10.1016/j.rse.2020.111816
doi: 10.1016/j.rse.2020.111816 |
[20] |
Luo J, Zheng Z C, Li T X, et al. Spatial heterogeneity of microtopography and its influence on the flow convergence of slopes under different rainfall patterns[J]. Journal of Hydrology, 2017, 545:88-99. DOI:10.1016/j.jhydrol.2016.12.018
doi: 10.1016/j.jhydrol.2016.12.018 |
[21] |
Wilson J P. Digital terrain modeling[J]. Geomorphology, 2012, 137(1):107-121. DOI:10.1016/j.geomorph.2011.03.012
doi: 10.1016/j.geomorph.2011.03.012 |
[22] |
Aguilar F J, Aguilar M A, Agüera F, et al. The accuracy of grid digital elevation models linearly constructed from scattered sample data[J]. International Journal of Geographical Information Science, 2006, 20(2):169-192. DOI:10.1080/13658810500399670
doi: 10.1080/13658810500399670 |
[23] |
Korzeniowska K, Pfeifer N, Landtwing S. Mapping gullies, dunes, lava fields, and landslides via surface roughness[J]. Geomorphology, 2018, 301:53-67. DOI:10.1016/j.geomorph.2017.10.011
doi: 10.1016/j.geomorph.2017.10.011 |
[24] | 王舒. 基于被动微波遥感的地表粗糙度及土壤水分反演研究[J]. 测绘学报, 2021, 50(10):1419. |
[ Wang S. Development of surface roughness and soil moisture retrieval algorithm using passive microwave remote sensing data[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1419. ] | |
[25] |
Hengl T. Finding the right pixel size[J]. Computers & Geosciences, 2006, 32(9):1283-1298. DOI:10.1016/j.cageo.2005.11.008
doi: 10.1016/j.cageo.2005.11.008 |
[26] |
Olaya V. Chapter 6 basic land-surface parameters[J]. Developments in Soil Science, 2009, 33:141-169. DOI:10.1016/S0166-2481(08)00006-8
doi: 10.1016/S0166-2481(08)00006-8 |
[27] |
Pike R J, Evans I S, Hengl T. Chapter 1 geomorphometry: A brief Guide[J]. Developments in Soil Science, 2009, 33:3-30. DOI:10.1016/S0166-2481(08)00001-9
doi: 10.1016/S0166-2481(08)00001-9 |
[28] |
Shepard M, Campbell B, Bulmer M, et al. The roughness of natural terrain: A planetary and remote sensing perspective[J]. Journal of Geophysical Research, 2001, 106:32777-32795. DOI:10.1029/2000JE001429
doi: 10.1029/2000JE001429 |
[29] |
Berti M, Corsini A, Daehne A. Comparative analysis of surface roughness algorithms for the identification of active landslides[J]. Geomorphology, 2013, 182:1-18. DOI:10.1016/j.geomorph.2012.10.022
doi: 10.1016/j.geomorph.2012.10.022 |
[30] |
Brubaker K M, Myers W L, Drohan P J, et al. The use of LiDAR terrain data in characterizing surface roughness and microtopography[J]. Applied and Environmental Soil Science, 2013, 2013:891534. DOI:10.1155/2013/891534
doi: 10.1155/2013/891534 |
[31] |
Nield J M, Wiggs G F. The application of terrestrial laser scanning to aeolian saltation cloud measurement and its response to changing surface moisture[J]. Earth Surface Processes and Landforms, 2011, 36(2):273-278.
doi: 10.1002/esp.2102 |
[1] | 涂平, 林偲蔚, 周千千, 谢静, 范玉贵, 陈楠, 林伟斌, 郭连鹤. 顾及地形影响的火星地表天文辐射时空特征分析[J]. 地球信息科学学报, 2023, 25(8): 1611-1624. |
[2] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[3] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[4] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[5] | 焦怀瑾, 陈崇成, 黄洪宇. 结合ICESat-2和GEDI的中国东南丘陵地区ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2023, 25(2): 409-420. |
[6] | 单宝艳, 张巧, 任启新, 樊文平, 吕永强. 基于局地气候分区的济南市热环境空间分异及其 影响因素[J]. 地球信息科学学报, 2022, 24(4): 711-722. |
[7] | 王丽英, 王鑫宁. 多值体素连通区域构建下的机载LIDAR数据三维平面提取[J]. 地球信息科学学报, 2021, 23(9): 1598-1607. |
[8] | 贺卓文, 陈楠. 复杂网络理论在黄土高原沟谷地貌特征研究中的应用[J]. 地球信息科学学报, 2021, 23(7): 1196-1207. |
[9] | 杨灿灿, 许芳年, 江岭, 王瑞璠, 尹力, 赵明伟, 张鲜鲜. 基于街景影像的城市道路空间舒适度研究[J]. 地球信息科学学报, 2021, 23(5): 785-801. |
[10] | 於佳宁, 刘凯, 张冰玥, 黄滢, 范晨雨, 宋春桥, 汤国安. 中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析[J]. 地球信息科学学报, 2021, 23(4): 646-657. |
[11] | 何永红, 靳鹏伟, 蒋陈纯. 多尺度相关性分析的机载双极化InSAR轨道误差校正方法[J]. 地球信息科学学报, 2021, 23(4): 670-679. |
[12] | 刘明杰, 徐卓揆, 郜允兵, 杨晶, 潘瑜春, 高秉博, 周艳兵, 周万鹏, 王凌. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020, 22(9): 1799-1813. |
[13] | 何永红, 靳鹏伟, 舒敏. 基于多尺度相关性分析的InSAR对流层延迟误差改正算法[J]. 地球信息科学学报, 2020, 22(9): 1878-1886. |
[14] | 陶宇, 王春, 徐燕, 张光祖, 宋素素, 杨维. DEM建模视角下的城市道路分类与表达[J]. 地球信息科学学报, 2020, 22(8): 1589-1596. |
[15] | 申鑫杰, 赵芮, 何瑞珍, 王琦, 郭煜琛. 郑州市市区风环境模拟研究[J]. 地球信息科学学报, 2020, 22(6): 1349-1356. |
|