地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (3): 439-449.doi: 10.12082/dqxxkx.2023.220495
• 地球信息科学理论与方法 • 下一篇
高顺祥1(), 陈珍1, 张志健1, 陈越1, 肖中圣1, 邓进1,2, 许奇1,3,*(
)
收稿日期:
2022-07-08
修回日期:
2022-09-13
出版日期:
2023-03-25
发布日期:
2023-04-19
通讯作者:
* 许奇(1982— ),男,云南普洱人,博士,副教授,研究方向为轨道交通与城市可持续发展。 E-mail: xuqi@bjtu.edu.cn作者简介:
高顺祥(1999— ),男,安徽亳州人,硕士研究生,主要从事时空大数据挖掘研究。E-mail: 20120807@bjtu.edu.cn
基金资助:
GAO Shunxiang1(), CHEN Zhen1, ZHANG Zhijian1, CHEN Yue1, XIAO Zhongsheng1, DENG Jin1,2, XU Qi1,3,*(
)
Received:
2022-07-08
Revised:
2022-09-13
Online:
2023-03-25
Published:
2023-04-19
Contact:
XU Qi
Supported by:
摘要:
改善末端的慢行环境是提升绿色交通出行竞争力的关键问题。既有研究多针对出行效率问题分析地面公交末端出行的改善效果,未充分考虑城市公共交通系统与土地利用的关系。本文融合多源交通大数据构建“门到门”精细尺度的公共交通出行链,提出步行和骑行等两种方式下公共交通全过程出行时间的计算方法,据此构建基于累计机会模型的末端出行改善效果的评估模型,研究骑行替代步行后公共交通可达性改善效果。该方法两步计算具有计算量较小和数据更新机制灵活的特点,适应于大空间尺度公共交通可达性研究。基于2020年北京的案例研究表明:骑行替代的公共交通出行时间平均减少315 s,降低幅度达12.8%;末端出行效率的提高改善将进一步提升就业、医疗、餐饮、绿地、购物和休闲等城市居民活动的公共交通可达性,其改善幅度达90%、74%、94%、33%、107%和77%,且改善的区域聚集于中心城区和外围居住组团。另外,公共交通可达性改善效果呈圈层径向递减的空间特征,城市轨道交通作为公共交通的主干网络,就业、医疗、餐饮、绿地、购物和休闲活动提升效果分别为地面公交的1.43、1.43、1.70、1.42、1.70、1.71倍。
高顺祥, 陈珍, 张志健, 陈越, 肖中圣, 邓进, 许奇. 骑行替代步行后公共交通可达性改善效果评估方法[J]. 地球信息科学学报, 2023, 25(3): 439-449.DOI:10.12082/dqxxkx.2023.220495
GAO Shunxiang, CHEN Zhen, ZHANG Zhijian, CHEN Yue, XIAO Zhongsheng, DENG Jin, XU Qi. Evaluation of Improvement of Public Transport Accessibility Considering Riding Instead of Walking[J]. Journal of Geo-information Science, 2023, 25(3): 439-449.DOI:10.12082/dqxxkx.2023.220495
[1] | 毛保华, 王敏, 何天健, 等. 城市公共交通服务水平研究回顾和展望[J]. 交通运输系统工程与信息, 2022, 22(1):2-13. |
[Mao B H, Wang M, He T J, et al. A review and prospect of urban public transit level-of-service research[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1):2-13.] DOI:10.16097/j.cnki.1009-6744.2022.01.001
doi: 10.16097/j.cnki.1009-6744.2022.01.001 |
|
[2] | 段德忠, 刘承良, 桂钦昌, 等. 西方城市公共交通空间研究进展:一个地理学的视角[J]. 地理与地理信息科学, 2016, 32(5):87-96. |
[Duan D Z, Liu C L, Gui Q C, et al. Advances in space research of western urban public transport: A geography perspective[J]. Geography and Geo-Information Science, 2016, 32(5):87-96.] DOI:10.3969/j.issn.1672-0504.2016.05.014
doi: 10.3969/j.issn.1672-0504.2016.05.014 |
|
[3] | 樊晓春, 张雪英, 刘学军, 等. 一种公交换乘优化算法设计[J]. 地球信息科学学报, 2009, 11(2):157-162. |
[Fan X C, Zhang X Y, Liu X J, et al. Design of an algorithm of public traffic transfer based on the least transfer[J]. Journal of Geo-Information Science, 2009, 11(2):157-162.] DOI:10.3969/j.issn.1560-8999.2009.02.004
doi: 10.3969/j.issn.1560-8999.2009.02.004 |
|
[4] |
Vansteenwegen P, Melis L, Aktaş D, et al. A survey on demand-responsive public bus systems[J]. Transportation Research Part C: Emerging Technologies, 2022, 137:103573. DOI:10.1016/j.trc.2022.103573
doi: 10.1016/j.trc.2022.103573 |
[5] | 林堉楠, 徐媛, 杨家文. 轨道交通车站周边建成环境对骑行的影响——基于深圳市ofo数据的实证研究[J]. 城市交通, 2020, 18(1):83-94,58. |
[Lin Y N, Xu Y, Yang J W. Built environment on linking bicycle to rail transit: Case study based on ofo data in Shenzhen[J]. Urban Transport of China, 2020, 18(1):83-94,58.] DOI:10.13813/j.cn11-5141/u.2020.0004
doi: 10.13813/j.cn11-5141/u.2020.0004 |
|
[6] |
申犁帆, 王烨, 张纯, 等. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究——以北京市44个轨道站点为例[J]. 地理学报, 2018, 73(12):2423-2439.
doi: 10.11821/dlxb201812011 |
[Shen L F, Wang Y, Zhang C, et al. Relationship between built environment of rational pedestrian catchment areas and URT commuting ridership: Evidence from 44 URT stations in Beijing[J]. Acta Geographica Sinica, 2018, 73(12):2423-2439.] DOI:10.11821/dlxb201812011
doi: 10.11821/dlxb201812011 |
|
[7] | 王家川, 欧阳松寿. 北京市轨道交通站点周边区域共享自行车运行不均衡性研究[J]. 交通运输系统工程与信息, 2019, 19(1):214-221. |
[Wang J C, Ouyang S S. Disequilibrium of bicycle-sharing in rail transit station areas in Beijing[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(1):214-221.] DOI:10.16097/j.cnki.1009-6744.2019.01.032
doi: 10.16097/j.cnki.1009-6744.2019.01.032 |
|
[8] |
高楹, 宋辞, 郭思慧, 等. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1):155-170.
doi: 10.12082/dqxxkx.2021.200351 |
[Gao Y, Song C, Guo S H, et al. Spatial-temporal characteristics and influencing factors of source and sink of dockless sharing bicycles connected to subway stations[J]. Journal of Geo-Information Science, 2021, 23(1):155-170.] DOI:10.12082/dqxxkx.2021.200351
doi: 10.12082/dqxxkx.2021.200351 |
|
[9] |
邝嘉恒, 邬群勇. 接驳地铁站的共享单车时空均衡性分析与吸引区域优化[J]. 地球信息科学学报, 2022, 24(7):1337-1348.
doi: 10.12082/dqxxkx.2022.210775 |
[Kuang J H, Wu Q Y. Spatial-temporal equilibrium analysis and attraction area optimization of dockless sharing bicycles connected to subway stations[J]. Journal of Geo-Information Science, 2022, 24(7):1337-1348.] DOI:10.12082/dqxxkx.2022.210775
doi: 10.12082/dqxxkx.2022.210775 |
|
[10] | 孙启鹏, 曾开邦, 张锴琦, 等. 北京市共享单车出行的时空规律与需求预测研究[J]. 交通运输系统工程与信息, 2022, 22(1):332-338. |
[Sun Q P, Zeng K B, Zhang K Q, et al. Spatiotemporal travel patterns and demand prediction of shared bikes in Beijing[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1):332-338.] DOI:10.16097/j.cnki.1009-6744.2022.01.035
doi: 10.16097/j.cnki.1009-6744.2022.01.035 |
|
[11] |
Jäppinen S, Toivonen T, Salonen M. Modelling the potential effect of shared bicycles on public transport travel times in Greater Helsinki: An open data approach[J]. Applied Geography, 2013, 43:13-24. DOI:10.1016/j.apgeog.2013.05.010
doi: 10.1016/j.apgeog.2013.05.010 |
[12] |
Lee J, Choi K, Leem Y. Bicycle-based transit-oriented development as an alternative to overcome the criticisms of the conventional transit-oriented development[J]. International Journal of Sustainable Transportation, 2016, 10(10):975-984. DOI:10.1080/15568318.2014.923547
doi: 10.1080/15568318.2014.923547 |
[13] |
Griffin G P, Sener I N. Planning for bike share connectivity to rail transit[J]. Journal of Public Transportation, 2016, 19(2):1-22. DOI:10.5038/2375-0901.19.2.1
doi: 10.5038/2375-0901.19.2.1 pmid: 27872554 |
[14] |
Deboosere R, El-Geneidy A M, Levinson D. Accessibility-oriented development[J]. Journal of Transport Geography, 2018, 70:11-20. DOI:10.1016/j.jtrangeo.2018.05.015
doi: 10.1016/j.jtrangeo.2018.05.015 |
[15] | 许奇, 陈越, 黄靖茹, 等. 考虑出行费用的就业可达性分析[J]. 交通运输系统工程与信息, 2022, 22(2):37-44. |
[Xu Q, Chen Y, Huang J R, et al. Job accessibility analysis considering travel cost[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2):37-44.] DOI:10.16097/j.cnki.1009-6744.2022.02.004
doi: 10.16097/j.cnki.1009-6744.2022.02.004 |
|
[16] |
Hansen W G. How accessibility shapes land use[J]. Journal of the American Institute of Planners, 1959, 25(2):73-76. DOI:10.1080/01944365908978307
doi: 10.1080/01944365908978307 |
[17] |
Geurs K T, de Montis A, Reggiani A. Recent advances and applications in accessibility modelling[J]. Computers, Environment and Urban Systems, 2015, 49:82-85. DOI:10.1016/j.compenvurbsys.2014.09.003
doi: 10.1016/j.compenvurbsys.2014.09.003 |
[18] |
Yang L, Ma R, Zhang H M, et al. Driving behavior recognition using EEG data from a simulated car-following experiment[J]. Accident Analysis & Prevention, 2018, 116:30-40. DOI:10.1016/j.aap.2017.11.010
doi: 10.1016/j.aap.2017.11.010 |
[19] |
Horner M W. Spatial dimensions of urban commuting: A review of major issues and their implications for future geographic research[J]. The Professional Geographer, 2004, 56(2):160-173. DOI:10.1111/j.0033-0124.2004.05602002.x
doi: 10.1111/j.0033-0124.2004.05602002.x |
[20] |
Geurs K T, Wee B V. Accessibility evaluation of land-use and transport strategies: Review and research directions[J]. Journal of Transport Geography, 2004, 12(2):127-140. DOI:10.1016/j.jtrangeo.2003.10.005
doi: 10.1016/j.jtrangeo.2003.10.005 |
[21] | Foda, M. A., & Osman, A. O. A GIS approach to study the bus transit network accessibility, case study: The city of Alexandria. Journal of Arab Academy for Science, Technology & Maritime Transport, 2008, 34(65):32-39. |
[22] |
Lei T L, Church R L. Mapping transit-based access: Integrating GIS, routes and schedules[J]. International Journal of Geographical Information Science, 2010, 24(2):283-304. DOI:10.1080/13658810902835404
doi: 10.1080/13658810902835404 |
[23] |
Mavoa S, Witten K, et al. GIS based destination accessibility via public transit and walking in Auckland, New Zealand[J]. Journal of Transport Geography, 2012, 20(1):15-22. DOI:10.1016/j.jtrangeo.2011.10.001
doi: 10.1016/j.jtrangeo.2011.10.001 |
[24] | 江世雄. 城市公共交通系统可达性评价与优化方法[D]. 北京: 北京交通大学, 2019. |
[Jiang S X. Urban public transit system accessibility evaluation and optimization method[D]. Beijing: Beijing Jiaotong University, 2019.] | |
[25] | Ji Y J, Cao Y, Liu Y, et al. Analysis of temporal and spatial usage patterns of dockless bike sharing system around rail transit station area[J]. Journal of Southeast University (English Edition), 2019, 35(2):228-235. |
[26] |
Cheng C L, Agrawal A. TTSAT: A new approach to mapping transit accessibility[J]. Journal of Public Transportation, 2010, 13(1):55-72.
doi: 10.5038/2375-0901 |
[27] |
Zuo T, Wei H, Rohne A. Determining transit service coverage by non-motorized accessibility to transit: Case study of applying GPS data in Cincinnati metropolitan area[J]. Journal of Transport Geography, 2018, 67:1-11. DOI:10.1016/j.jtrangeo.2018.01.002
doi: 10.1016/j.jtrangeo.2018.01.002 |
[28] |
Wang J Y, Kwan M P, et al. Assessing changes in job accessibility and commuting time under bike-sharing scenarios[J]. Transportmetrica A Transport Science, 2022, 20(4):39-50. DOI:10.1080/23249935.2022.2043950
doi: 10.1080/23249935.2022.2043950 |
[29] |
Zuo T, Wei H, Chen N, et al. First-and-last Mile solution via bicycling to improving transit accessibility and advancing transportation equity[J]. Cities, 2020, 99:102614. DOI:10.1016/j.cities.2020.102614
doi: 10.1016/j.cities.2020.102614 |
[30] | 高德开放平台. 路线规划2.0[EB/OL]. (2022-6-15) [2022-6-27] https://lbs.amap.com/api/webservice/guide/api/newroute. |
[31] | 中国城市规划设计研究院. 全国主要城市通勤检测报告[R]. 北京: 中国城市规划设计研究院, 2020. |
[32] | Transit Cooperative Research Program, United States. Federal Transit Administration, Transit Development Corporation, National Research Council. Transit Capacity and Quality of Service Manual, second ed[M].Transportation Research Board, Washington, DC, 2003. |
[33] |
Hadas Y, Ranjitkar P. Modeling public-transit connectivity with spatial quality-of-transfer measurements[J]. Journal of Transport Geography, 2012, 22:137-147. DOI:10.1016/j.jtrangeo.2011.12.003
doi: 10.1016/j.jtrangeo.2011.12.003 |
[1] | 王钰莹, 王海军, 周新刚, 张彬, 周晓艳. 耦合元胞和斑块尺度分层驱动机制的城镇扩展CA模拟[J]. 地球信息科学学报, 2023, 25(9): 1784-1797. |
[2] | 董勇, 周亮, 高鸿, 王宝. 黄土高原地形破碎化探测及空间异质性分析[J]. 地球信息科学学报, 2023, 25(8): 1625-1636. |
[3] | 杨雨, 宋福铁, 张杰. 金融网络中心性对中国城市经济增长的影响机理[J]. 地球信息科学学报, 2023, 25(5): 982-998. |
[4] | 吴子豪, 刘耀林, 冯向阳, 陈奕云, 闫庆武. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573-587. |
[5] | 刘乐, 盛科荣, 王传阳. 中国科技型初创企业的时空格局及影响因素研究——基于创业生态系统视角[J]. 地球信息科学学报, 2023, 25(2): 340-353. |
[6] | 岳林峰, 薛存金, 王振国, 牛超然. 基于Argo剖面浮标观测的海洋溶解氧空间-质量迭代插值方法[J]. 地球信息科学学报, 2023, 25(10): 2000-2011. |
[7] | 高歆, 袁胜元, 李京忠, 赵会兵, 许淑娜. 面向稀疏降水站点的套合各向异性贝叶斯地统计估计研究[J]. 地球信息科学学报, 2022, 24(8): 1445-1458. |
[8] | 赵迪, 陈鹏, 李海成, 苗红斌. 2005—2018年北京市外来人口迁移特征与影响因素分析[J]. 地球信息科学学报, 2022, 24(4): 698-710. |
[9] | 李军, 刘举庆, 游林, 董恒, 俞艳, 张晓盼, 钟文军, 杨典华. 多源大数据支持的土地储备智能决策模型集研究[J]. 地球信息科学学报, 2022, 24(2): 299-309. |
[10] | 高书鹏, 刘晓龙, 宋金玲, 史正涛, 杨磊, 郭利彪. 热带山区高时空分辨率NDVI融合精度及其影响因素分析[J]. 地球信息科学学报, 2022, 24(2): 405-419. |
[11] | 梁立锋, 曾文霞, 宋悦祥, 邵振峰, 刘秀娟. 顾及人群集聚和情绪强度的城市综合活力评价及影响因素[J]. 地球信息科学学报, 2022, 24(10): 1854-1866. |
[12] | 刘智谦, 吕建军, 姚尧, 张嘉琪, 寇世浩, 关庆锋. 基于街景图像的可解释性城市感知模型研究方法[J]. 地球信息科学学报, 2022, 24(10): 2045-2057. |
[13] | 韦原原, 江南, 陈云海, 李响, 杨振凯. 顾及时空对象空间相互作用的疫情风险评估建模与应用[J]. 地球信息科学学报, 2021, 23(2): 274-283. |
[14] | 葛咏, 刘梦晓, 胡姗, 任周鹏. 时空统计学在贫困研究中的应用及展望[J]. 地球信息科学学报, 2021, 23(1): 58-74. |
[15] | 艾廷华, 雷英哲, 谢鹏, 周校东. 等时线模型支持下的深圳市综合医院空间可达性测度分析[J]. 地球信息科学学报, 2020, 22(1): 113-121. |
|