地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (3): 439-449.doi: 10.12082/dqxxkx.2023.220495

• 地球信息科学理论与方法 •    下一篇

骑行替代步行后公共交通可达性改善效果评估方法

高顺祥1(), 陈珍1, 张志健1, 陈越1, 肖中圣1, 邓进1,2, 许奇1,3,*()   

  1. 1.北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
    2.北京城建交通设计研究院有限公司,北京 100037
    3.北京交通大学 中国综合交通研究中心,北京 100044
  • 收稿日期:2022-07-08 修回日期:2022-09-13 出版日期:2023-03-25 发布日期:2023-04-19
  • 通讯作者: * 许奇(1982— ),男,云南普洱人,博士,副教授,研究方向为轨道交通与城市可持续发展。 E-mail: xuqi@bjtu.edu.cn
  • 作者简介:高顺祥(1999— ),男,安徽亳州人,硕士研究生,主要从事时空大数据挖掘研究。E-mail: 20120807@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(71621001);国家自然科学基金项目(71971021)

Evaluation of Improvement of Public Transport Accessibility Considering Riding Instead of Walking

GAO Shunxiang1(), CHEN Zhen1, ZHANG Zhijian1, CHEN Yue1, XIAO Zhongsheng1, DENG Jin1,2, XU Qi1,3,*()   

  1. 1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China
    2. Beijing Urban Construction Transport Planning & Design Institute Co. Limited, Beijing 100037, China
    3. Integrated Transportation Research Centre, Beijing Jiaotong University, Beijing 100044, China
  • Received:2022-07-08 Revised:2022-09-13 Online:2023-03-25 Published:2023-04-19
  • Contact: XU Qi
  • Supported by:
    National Natural Science Foundation of China(71621001);National Natural Science Foundation of China(71971021)

摘要:

改善末端的慢行环境是提升绿色交通出行竞争力的关键问题。既有研究多针对出行效率问题分析地面公交末端出行的改善效果,未充分考虑城市公共交通系统与土地利用的关系。本文融合多源交通大数据构建“门到门”精细尺度的公共交通出行链,提出步行和骑行等两种方式下公共交通全过程出行时间的计算方法,据此构建基于累计机会模型的末端出行改善效果的评估模型,研究骑行替代步行后公共交通可达性改善效果。该方法两步计算具有计算量较小和数据更新机制灵活的特点,适应于大空间尺度公共交通可达性研究。基于2020年北京的案例研究表明:骑行替代的公共交通出行时间平均减少315 s,降低幅度达12.8%;末端出行效率的提高改善将进一步提升就业、医疗、餐饮、绿地、购物和休闲等城市居民活动的公共交通可达性,其改善幅度达90%、74%、94%、33%、107%和77%,且改善的区域聚集于中心城区和外围居住组团。另外,公共交通可达性改善效果呈圈层径向递减的空间特征,城市轨道交通作为公共交通的主干网络,就业、医疗、餐饮、绿地、购物和休闲活动提升效果分别为地面公交的1.43、1.43、1.70、1.42、1.70、1.71倍。

关键词: 城市公共交通, 绿色交通, “最后一公里”问题, 末端衔接, 可达性分析, 空间异质性, 全出行链, 多源大数据

Abstract:

Improving the slow travel environment at public transport stations is a key issue to enhance the competitiveness of green transportation. It is an important measure to improve the service level of public transportation to further coordinate public transportation, especially the end connection between urban rail transit and slow traffic, and to open up the ' last mile '. Existing studies mostly analyze the improvement of travel efficiency at bus stations, and do not fully consider the interaction between urban public transport system and land use. Achieving good accessibility is the main goal of building a livable city, and the spatial analysis of public transport accessibility provides a core indicator to measure the integration of public transport and urban development. As a location-based accessibility evaluation method, the cumulative opportunity method has advantages in understanding the relationship between transportation and land use and is easy to use. To this end, we construct a “door-to-door” fine-scale public transport trip chain based on multi-source traffic big data and develop a two-step calculation method to compute travel time of public transport under two modes of walking and cycling. The two-step calculation of this method has the characteristics of less calculation and flexible data update mechanism, which is suitable for the study of public transport accessibility at large spatial scale. A case study based on Beijing in 2020 shows that the average travel time of public transport via cycling is reduced by 315 seconds and 12.8%. Improvement of travel efficiency at stations improves the public transport accessibility for urban activities such as employment, health care, catering, green space, shopping, and leisure. The improvement range is 90%, 74%, 94%, 33%, 107%, and 77%, respectively, and the improved areas are concentrated in the central urban area and the surrounding residential areas. In addition, the improvement effect of accessibility of public transport shows a spatial feature of a radial-decreasing circular structure. As the main network of public transport, urban rail transit presents an improvement in employment, medical treatment, catering, green space, shopping, and leisure activities by 1.43, 1.43, 1.70, 1.42, 1.70, and 1.71 times, respectively, compared to ground bus. The results show that compared with the ground bus system, cycling substitution will significantly improve the integration of rail transit and city. According to the co-opetition relationship between rail transit and ground bus, rational allocation of bicycle facilities and optimization of shared bicycles will further increase the competitiveness of green transportation.

Key words: urban public transport, green transportation, "first-and-last mile" problem of transit, terminal connection, accessibility analysis, full trip chain, spatial heterogeneity, multi-source big data