地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (1): 90-101.doi: 10.12082/dqxxkx.2023.220535
伍跃飞1,2(), 李建微1,2,*(
), 毕胜1,2, 朱馨1,2, 王前锋3
收稿日期:
2022-07-21
修回日期:
2022-09-19
出版日期:
2023-01-25
发布日期:
2023-03-25
通讯作者:
*李建微(1979— ),男,福建龙岩人,副研究员,主要从事森林火灾蔓延模型和智能优化算法研究。 Email: lwticq@163.com作者简介:
伍跃飞(1997— ),男,浙江金华人,硕士生,主要从事智能优化算法和三维虚拟地球技术研究。Email: 1620584767@qq.com
基金资助:
WU Yuefei1,2(), LI Jianwei1,2,*(
), BI Sheng1,2, ZHU Xin1,2, WANG Qianfeng3
Received:
2022-07-21
Revised:
2022-09-19
Online:
2023-01-25
Published:
2023-03-25
Contact:
LI Jianwei
Supported by:
摘要:
当消防事故发生在无明显道路或道路稀疏的野外复杂山区时,如何在复杂山地环境中规划安全、快速通过的路线至关重要。针对蚁群算法在复杂山地路径规划中容易陷入局部最优以及搜索时间较长的问题,本文提出一种适用于细粒度野外山地环境的徒步应急救援路径规划算法。本文首先根据已有文献分析地表信息与人类运动速度之间的关系,综合地表灌木盖度与地形坡度因素设计寻优算法的目标函数和启发函数;接着采用定向范围视野的蚂蚁搜索方式,决定蚁群算法寻优过程中每一步的网格选择;最后采用拉普拉斯分布调整初始信息素、添加隔离信息素、融合遗传算子与分组更新常规信息素的方法改进蚁群算法。将算法应用到400
伍跃飞, 李建微, 毕胜, 朱馨, 王前锋. 面向山地徒步应急救援路径规划的改进蚁群算法研究[J]. 地球信息科学学报, 2023, 25(1): 90-101.DOI:10.12082/dqxxkx.2023.220535
WU Yuefei, LI Jianwei, BI Sheng, ZHU Xin, WANG Qianfeng. Research on Improved Ant Colony Algorithm for Mountain Hiking Emergency Rescue Path Planning[J]. Journal of Geo-information Science, 2023, 25(1): 90-101.DOI:10.12082/dqxxkx.2023.220535
表2
小范围环境各算法评估
环境 | 环境1 | 环境2 | |||||||
---|---|---|---|---|---|---|---|---|---|
平均适应度/km | 标准差/km | 平均运行时间/s | 平均收敛次数/次 | 平均适应度/km | 标准差/km | 平均运行时间/s | 平均收敛次数/次 | ||
PRACS | 8.3304 | 0.1136 | 7.8916 | 95 | 20.1837 | 0.1248 | 19.5329 | 93 | |
文献[9] | 8.3443 | 0.1405 | 7.3538 | 85 | 20.1466 | 0.1548 | 14.9997 | 95 | |
文献[22] | 8.7185 | 0.1324 | 4.6301 | 97 | 20.0394 | 0.2996 | 11.4807 | 98 | |
本文算法 | 8.2868 | 0.0828 | 7.4948 | 84 | 19.6965 | 0.0883 | 14.0772 | 82 |
[1] | 王帅辉, 耿松涛. 全域旅游营销策略与品牌策略规划[J]. 价格月刊, 2018(3):57-60. |
[Wang S H, Geng S T. Marketing strategy and brand strategy planning of region-based tourism[J]. Prices Monthly, 2018(3):57-60. ] DOI:10.14076/j.issn.1006-2025.2018.03.11
doi: 10.14076/j.issn.1006-2025.2018.03.11 |
|
[2] | 覃先林, 李晓彤, 刘树超, 等. 中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020, 24(5):511-520. |
[Qin X L, Li X T, Liu S C, et al. Forest fire early warning and monitoring techniques using satellite remote sensing in China[J]. Journal of Remote Sensing, 2020, 24(5):511-520. ] | |
[3] |
Li J W, Li X W, Chen C C, et al. Three-dimensional dynamic simulation system for forest surface fire spreading prediction[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(8):1850026. DOI:10.1142/S021800141850026X
doi: 10.1142/S021800141850026X |
[4] |
Guo C, Li D M, Zhang G L, et al. Real-time path planning in urban area via VANET-assisted traffic information sharing[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7):5635-5649. DOI:10.1109/TVT.2018.2806979
doi: 10.1109/TVT.2018.2806979 |
[5] |
Jeong D, Kim M, Song K, et al. Planning a green infrastructure network to integrate potential evacuation routes and the urban green space in a coastal city: The case study of haeundae district, Busan, south Korea[J]. The Science of the Total Environment, 2021, 761:143179. DOI:10.1016/j.scitotenv.2020.143179
doi: 10.1016/j.scitotenv.2020.143179 |
[6] |
Yang B W, Ding Z M, Yuan L, et al. A novel urban emergency path planning method based on vector grid map[J]. IEEE Access, 8:154338-154353. DOI:10.1109/ACCESS.2020.3018729
doi: 10.1109/ACCESS.2020.3018729 |
[7] |
Cai Z, Cui X R, Su X, et al. A novel vector-based dynamic path planning method in urban road network[J]. IEEE Access, 8:9046-9060. DOI:10.1109/ACCESS.2019.2962392
doi: 10.1109/ACCESS.2019.2962392 |
[8] |
Elhoseny M, Tharwat A, Hassanien A E. Bezier curve based path planning in a dynamic field using modified genetic algorithm[J]. Journal of Computational Science, 2018, 25:339-350. DOI:10.1016/j.jocs.2017.08.004
doi: 10.1016/j.jocs.2017.08.004 |
[9] |
Luo Q, Wang H B, Zheng Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications, 2020, 32(6):1555-1566. DOI:10.1007/s00521-019-04172-2
doi: 10.1007/s00521-019-04172-2 |
[10] |
Zhang Z, He R, Yang K. A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm[J]. Advances in Manufacturing, 2022, 10(1):114-130. DOI:10.1007/s40436-021-00366-x
doi: 10.1007/s40436-021-00366-x |
[11] |
Chen X, Dai Y. Research on an improved ant colony algorithm fusion with genetic algorithm for route planning[C]. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2020, 1:1273-1278. DOI:10.1109/ITNEC48623.2020.9084730
doi: 10.1109/ITNEC48623.2020.9084730 |
[12] |
Chen Y L, Bai G Q, Zhan Y, et al. Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning[J]. IEEE Access, 9:40728-40742. DOI:10.1109/ACCESS.2021.3062375
doi: 10.1109/ACCESS.2021.3062375 |
[13] |
Liu G Y, Shu C, Liang Z W, et al. A modified sparrow search algorithm with application in 3d route planning for UAV[J]. Sensors (Basel, Switzerland), 2021, 21(4):1224. DOI:10.3390/s21041224
doi: 10.3390/s21041224 |
[14] |
Ma Y N, Gong Y J, Xiao C F, et al. Path planning for autonomous underwater vehicles: An ant colony algorithm incorporating alarm pheromone[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1):141-154. DOI:10.1109/TVT.2018.2882130
doi: 10.1109/TVT.2018.2882130 |
[15] |
李逸斐, 陈静. 基于改进RRT*算法的城市低空路径规划方法研究[J]. 地球信息科学学报, 2022, 24(3):448-457.
doi: 10.12082/dqxxkx.2022.210413 |
[Li Y F, Chen J. Research on urban low-altitude path planning method based on improved RRT*Algorithm[J]. Journal of Geo-Information Science, 2022, 24(3):448-457. ] DOI:10.12082/dqxxkx.2022.210413
doi: 10.12082/dqxxkx.2022.210413 |
|
[16] |
徐晨晨, 廖小罕, 岳焕印, 等. 基于改进蚁群算法的无人机低空公共航路构建方法[J]. 地球信息科学学报, 2019, 21(4):570-579.
doi: 10.12082/dqxxkx.2019.180392 |
[Xu C C, Liao X H, Yue H Y, et al. Construction of a UAV low-altitude public air route based on an improved ant colony algorithm[J]. Journal of Geo-information Science, 2019, 21(4):570-579. ] DOI:10.12082/dqxxkx.2019.180392
doi: 10.12082/dqxxkx.2019.180392 |
|
[17] |
Zhang B, Li G B, Zheng Q X, et al. Path planning for wheeled mobile robot in partially known uneven terrain[J]. Sensors (Basel, Switzerland), 2022, 22(14):5217. DOI:10.3390/s22145217
doi: 10.3390/s22145217 |
[18] |
Pu X C, Xiong C W, Ji L H, et al. 3D path planning for a robot based on improved ant colony algorithm[J]. Evolutionary Intelligence, 2020:1-11. DOI:10.1007/s12065-02 0-00397-6
doi: 10.1007/s12065-02 0-00397-6 |
[19] |
贺娇, 谭代伦. 基于视野范围和遗传算法的三维地形路径规划[J]. 计算机工程与应用, 2021, 57(15):279-285.
doi: 10.3778/j.issn.1002-8331.2103-0071 |
[He J, Tan D L. Three-dimensional terrain path planning based on sight range and genetic algorithm[J]. Computer Engineering and Applications, 2021, 57(15):279-285. ]
doi: 10.3778/j.issn.1002-8331.2103-0071 |
|
[20] | 胡平志, 杨小柳, 李泽滔. 复杂山地环境下的机器人路径规划[J]. 计算机仿真, 2021, 38(3):286-291. |
[Hu P Z, Yang X L, Li Z T. PathPlanning of robots in complex terrain[J]. Computer Simulation, 2021, 38(3):286-291. ] | |
[21] |
Wang H, Zhang H J, Wang K, et al. Off-road path planning based on improved ant colony algorithm[J]. Wireless Personal Communications, 2018, 102(2):1705-1721. DOI:10.1007/s11277-017-5229-5
doi: 10.1007/s11277-017-5229-5 |
[22] |
Wang L F, Kan J M, Guo J, et al. 3D path planning for the ground robot with improved ant colony optimization[J]. Sensors (Basel, Switzerland), 2019, 19(4):815. DOI:10.3390/s19040815
doi: 10.3390/s19040815 |
[23] |
Campbell M J, Dennison P E, Butler B W. A LiDAR-based analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping[J]. International Journal of Wildland Fire, 2017, 26(10):884. DOI:10.1071/wf17031
doi: 10.1071/wf17031 |
[24] |
Glenn N F, Streutker D R, Chadwick D J, et al. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity[J]. Geomorphology, 2006, 73(1/2):131-148. DOI:10.1016/j.geomorph.2005.07.006
doi: 10.1016/j.geomorph.2005.07.006 |
[1] | 董勇, 周亮, 高鸿, 王宝. 黄土高原地形破碎化探测及空间异质性分析[J]. 地球信息科学学报, 2023, 25(8): 1625-1636. |
[2] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[3] | 谢静, 陈楠, 林偲蔚. 基于地形音乐的地形定量分析与空间分异研究—以陕北黄土高原为例[J]. 地球信息科学学报, 2023, 25(5): 924-934. |
[4] | 焦怀瑾, 陈崇成, 黄洪宇. 结合ICESat-2和GEDI的中国东南丘陵地区ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2023, 25(2): 409-420. |
[5] | 朱佳波, 王益, 张拾斤, 陈家亮, 杨璐. 基于路径模拟和空间句法的封闭式非门禁居住小区犯罪人逃逸行为研究[J]. 地球信息科学学报, 2023, 25(11): 2178-2190. |
[6] | 师长兴. 地形扫描数据TIN模型生成DEM的误差计算方法[J]. 地球信息科学学报, 2023, 25(1): 40-48. |
[7] | 张晗, 邬群勇. 基于LDA和优化蚁群的OD流向时空语义聚类算法[J]. 地球信息科学学报, 2022, 24(5): 837-850. |
[8] | 肖坤, 艾廷华, 王璐. 正六边形格网DEM下的等高线生成算法及质量评价[J]. 地球信息科学学报, 2022, 24(4): 643-656. |
[9] | 林偲蔚, 陈楠, 刘奇祺, 贺卓文. 基于DEM小流域复杂网络的黄土高原地貌自动识别研究[J]. 地球信息科学学报, 2022, 24(4): 657-672. |
[10] | 代文, 陈凯, 王春, 李敏, 陶宇. 顾及DEM误差空间自相关的地形变化检测方法[J]. 地球信息科学学报, 2022, 24(12): 2297-2308. |
[11] | 扈常钰, 徐月雪, 宋词, 朱红春. DEM起伏纹理的视觉认知内涵与多变量消隐方法[J]. 地球信息科学学报, 2022, 24(11): 2115-2127. |
[12] | 马子钦, 陈崇成, 黄正睿. 融合用户特征与群体智慧的多目标旅游线路推荐方法[J]. 地球信息科学学报, 2022, 24(10): 2033-2044. |
[13] | 戴云哲, 杨建新, 龚健, 叶菁, 李靖业, 李云. AutoPaCA:耦合过程-模式的城镇空间增长模拟模型[J]. 地球信息科学学报, 2022, 24(1): 87-99. |
[14] | 杨练兵, 陈春波, 郑宏伟, 罗格平, 尚白军, Olaf Hellwich. 基于优化随机森林回归模型的土壤盐渍化反演[J]. 地球信息科学学报, 2021, 23(9): 1662-1674. |
[15] | 张菊, 房世波, 刘汉湖. 基于微波数据与光学数据集成的机器学习技术在作物产量估算中的应用[J]. 地球信息科学学报, 2021, 23(6): 1082-1091. |
|