地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (3): 606-624.doi: 10.12082/dqxxkx.2023.220672
收稿日期:
2022-09-08
修回日期:
2022-12-06
出版日期:
2023-03-25
发布日期:
2023-04-19
通讯作者:
* 吴文挺(1990— ),男,福建福州人,博士,副研究员,研究方向为海岸带遥感。E-mail: wuwt@fzu.edu.cn作者简介:
巫磊(1997— ),男,安徽合肥人,硕士生,研究方向为海岸带遥感。E-mail: wulei972022@163.com
基金资助:
Received:
2022-09-08
Revised:
2022-12-06
Online:
2023-03-25
Published:
2023-04-19
Contact:
WU Wenting
Supported by:
摘要:
互花米草的快速入侵严重影响湿地生态系统平衡。因此,精确监测互花米草扩张的时空动态变化过程具有重要意义。尽管现有基于植被物候特征的互花米草遥感提取方法,避免了光谱特征相似性引起的分类误差,但受到云和潮汐的严重影响,难以获取大尺度湿地植被提取特征信息。本文提出一种结合最大值合成法和Savitzky-Golay(S-G)滤波算法提取互花米草关键物候特征,减弱大尺度云和潮汐对时序遥感信号特征的影响,精准重构符合植被生长趋势的NDVI时间序列数据。通过获取关键物候特征,确定互花米草提取的最优时间窗口,基于Google Earth Engine(GEE)平台精准获取互花米草空间分布状况并分析典型地区的互花米草空间分布特征。研究结果显示,生长季初期(6—7月)为互花米草提取的最优时间窗口,该时期总体分类精度为89.81%,Kappa系数为0.88,相比其他时期的总体分类精度提高10.09%,Kappa系数提高0.11。互花米草提取结果表明,2020年福建省互花米草入侵面积总计100.78 km2,主要分布在宁德、福州、泉州以及漳州等地。其中,宁德市互花米草分布面积最广,共计38.08 km2,占全省互花米草分布总面积的37.79%。福建沿岸的互花米草在空间分布上呈现多种地理特征,在半封闭型海湾和河口地区的沿岸附近主要以连续的条带或片状斑块分布,而在低潮位区域则多是零星斑块。本文研究成果能为互花米草扩散的长时期、大范围空间监测提供可行性方案,为湿地植被精准提取提供技术支撑,为实现海岸带资源的高质量可持续利用提供数据基础。
巫磊, 吴文挺. GEE平台下结合滤波算法和植被物候特征的互花米草遥感提取最优时间窗口确定[J]. 地球信息科学学报, 2023, 25(3): 606-624.DOI:10.12082/dqxxkx.2023.220672
WU Lei, WU Wenting. The Optimum Time Window for Spartina Alterniflora Classification based on the Filtering Algorithm and Vegetation Phonology Using GEE[J]. Journal of Geo-information Science, 2023, 25(3): 606-624.DOI:10.12082/dqxxkx.2023.220672
表1
随机森林输入变量信息
变量 | 公式 | 公式编号 | 变量特征 |
---|---|---|---|
B2 | — | 可见光波段,地面分辨率为10 m | |
B3 | — | 可见光波段,地面分辨率为10 m | |
B4 | — | 可见光波段,地面分辨率为10 m | |
B5 | — | 植被红边波段,地面分辨率为20 m | |
B6 | — | 植被红边波段,地面分辨率为20 m | |
B7 | — | 植被红边波段,地面分辨率为20 m | |
B8 | — | 近红外波段,地面分辨率为10 m | |
B8A | — | 植被红边波段,地面分辨率为20 m | |
B11 | — | 短波红外波段,地面分辨率为20 m | |
B12 | — | 短波红外波段,地面分辨率为20 m | |
NDVI | (3) | 检测植被覆盖度,反映植物冠层的背景影响 | |
LSWI | (4) | 对植被中液态水的总量和土壤背景极其敏感 | |
RVI | (5) | 增强植被与土壤背景之间的辐射差异 | |
mNDWI | (6) | 对水体具有很强的敏感性,通常用于水体识别 |
表4
福建省潮间带地物分类精度
互花米草 | 红树林 | 芦苇 | 养殖坑塘 | 林地 | 水域 | 光滩 | 裸地 | 建设用地 | UA/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
互花米草 | 92 | 0 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 95.83 | |
红树林 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 92.86 | |
芦苇 | 0 | 0 | 6 | 0 | 0 | 0 | 1 | 0 | 0 | 85.71 | |
养殖坑塘 | 1 | 0 | 0 | 35 | 0 | 6 | 1 | 0 | 2 | 77.78 | |
林地 | 1 | 0 | 0 | 2 | 66 | 0 | 2 | 0 | 0 | 92.96 | |
水域 | 2 | 0 | 0 | 5 | 0 | 146 | 6 | 0 | 0 | 91.82 | |
光滩 | 1 | 0 | 0 | 0 | 0 | 8 | 55 | 0 | 0 | 85.94 | |
裸地 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 25 | 3 | 86.21 | |
建设用地 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 4 | 47 | 85.45 | |
PA/% | 92.93 | 100 | 100 | 81.4 | 95.65 | 90.68 | 80.88 | 86.21 | 90.38 | ||
总体精度/% | 89.81 | ||||||||||
Kappa系数 | 0.88 |
[1] | 张静涵, 张轩波, 沈美亚, 等. 互花米草在中国的潜在生存区域预测[J]. 湿地科学与管理, 2020, 16(3):42-46. |
[Zhang J H, Zhang X B, Shen M Y, et al. Prediction of potential areas of surviving smooth cordgrass (Spartina alterniflora) in China[J]. Wetland Science & Management, 2020, 16(3):42-46.] DOI:10.3969/j.issn.1673-3290.2020.03.11
doi: 10.3969/j.issn.1673-3290.2020.03.11 |
|
[2] |
Zhuo W, Shi R H, Zhang C, et al. A novel method for leaf chlorophyll retrieval based on harmonic analysis: A case study on Spartina alterniflora[J]. Earth Science Informatics, 2020, 13(3):747-762. DOI:10.1007/s12145-020-00465-6
doi: 10.1007/s12145-020-00465-6 |
[3] | 宫乐, 张蕊, 李瑞利, 等. 天津滨海滩涂互花米草群落动态的研究[J]. 南开大学学报(自然科学版), 2016, 49(2):43-51. |
[Gong L, Zhang R, Li R L, et al. Study on community dynamics of Spartina alterniflora at the intertidal zone in Tianjin[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2016, 49(2):43-51.] | |
[4] |
Yang R M, Yang F. Impacts of Spartina alterniflora invasion on soil inorganic carbon in coastal wetlands in China[J]. Soil Science Society of America Journal, 2020, 84(3):844-855. DOI:10.1002/saj2.20073
doi: 10.1002/saj2.20073 |
[5] |
Yang B, Li X Z, Lin S W, et al. Invasive Spartina alterniflora can mitigate N2O emission in coastal salt marshes[J]. Ecological Engineering, 2020, 147:105758. DOI:10.1016/j.ecoleng.2020
doi: 10.1016/j.ecoleng.2020 |
[6] |
Lu J B, Zhang Y. Spatial distribution of an invasive plant Spartina alterniflora and its potential as biofuels in China[J]. Ecological Engineering, 2013, 52:175-181. DOI:10.1016/j.ecoleng.2012.12.107
doi: 10.1016/j.ecoleng.2012.12.107 |
[7] |
Xie R R, Zhu Y C, Li J B, et al. Changes in sediment nutrients following Spartina alterniflora invasion in a subtropical estuarine wetland, China[J]. CATENA, 2019, 180:16-23. DOI:10.1016/j.catena.2019.04.016
doi: 10.1016/j.catena.2019.04.016 |
[8] | 方民杰. 福建沿岸海域互花米草的分布[J]. 台湾海峡, 2012, 31(1):100-104. |
[Fang M J. Distribution of Spartina alterniflora in Fujian coast waters[J]. Journal of Oceanography in Taiwan Strait, 2012, 31(1):100-104.] DOI:10.3969/J.ISSN.1000-8160.2012.01.016
doi: 10.3969/J.ISSN.1000-8160.2012.01.016 |
|
[9] | 李慧颖, 申乃坤, 吴家法, 等. 广西北部湾入侵植物互花米草内生可培养细菌多样性及促生防病活性分析[J]. 南方农业学报, 2021, 52(4):1012-1021. |
[Li H Y, Shen N K, Wu J F, et al. Diversity of culturable endophytic bacteria in invasive plant Spartina alterniflora of Guangxi Beibu Gulf and their biocontrol effect and plant-growth-promoting activity[J]. Journal of Southern Agriculture, 2021, 52(4):1012-1021.] DOI:10.3969/j.issn.2095-1191.2021.04.019
doi: 10.3969/j.issn.2095-1191.2021.04.019 |
|
[10] | 解雪峰, 孙晓敏, 吴涛, 等. 互花米草入侵对滨海湿地生态系统的影响研究进展[J]. 应用生态学报, 2020, 31(6):2119-2128. |
[Xie X F, Sun X M, Wu T, et al. Impacts of Spartina alterniflora invasion on coastal wetland ecosystem: Advances and prospects[J]. Chinese Journal of Applied Ecology, 2020, 31(6):2119-2128.] DOI:10.13287/j.1001-9332.202006.032
doi: 10.13287/j.1001-9332.202006.032 |
|
[11] | 冯建祥, 黄茜, 陈卉, 等. 互花米草入侵对盐沼和红树林滨海湿地底栖动物群落的影响[J]. 生态学杂志, 2018, 37(3):943-951. |
[Feng J X, Huang Q, Chen H, et al. Effects of Spartina alterniflora invasion on benthic faunal community in saltmarsh and mangrove wetland[J]. Chinese Journal of Ecology, 2018, 37(3):943-951.] DOI:10.13292/j.1000-4890.201803.012
doi: 10.13292/j.1000-4890.201803.012 |
|
[12] | 曾艳, 田广红, 陈蕾伊, 等. 互花米草入侵对土壤生态系统的影响[J]. 生态学杂志, 2011, 30(9):2080-2087. |
[Zeng Y, Tian G H, Chen L Y, et al. Influence of Spartina alterniflora invasion on soil ecosystem: A review[J]. Chinese Journal of Ecology, 2011, 30(9):2080-2087.] DOI:10.13292/j.1000-4890.2011.0340
doi: 10.13292/j.1000-4890.2011.0340 |
|
[13] | 陈潘, 张燕, 朱晓静, 等. 互花米草入侵对鸟类的生态影响[J]. 生态学报, 2019, 39(7):2282-2290. |
[Chen P, Zhang Y, Zhu X J, et al. Ecological effects of invasion by the smooth cordgrass Spartina alterniflora on birds[J]. Acta Ecologica Sinica, 2019, 39(7):2282-2290.] DOI:10.5846/stxb201801110089
doi: 10.5846/stxb201801110089 |
|
[14] | 毛立, 孙志高, 陈冰冰, 等. 闽江河口互花米草入侵湿地土壤无机硫赋存形态及其影响因素[J]. 生态学报, 2021, 41(12):4840-4852. |
[Mao L, Sun Z G, Chen B B, et al. Variations of inorganic sulfur fractions and main influencing factors in marsh soils with different years of Spartina alterniflora invasion in the Min River Estuary[J]. Acta Ecologica Sinica, 2021, 41(12):4840-4852.] DOI:10.5846/stxb202004090845
doi: 10.5846/stxb202004090845 |
|
[15] | 于冬雪, 韩广轩, 王晓杰, 等. 互花米草入侵对黄河口潮沟形态特征和植物群落分布的影响[J]. 生态学杂志, 2022, 41(1):42-49. |
[Yu D X, Han G X, Wang X J, et al. Effects of Spartina alterniflora invasion on morphological characteristics of tidal creeks and plant community distribution in the Yellow River Estuary[J]. Chinese Journal of Ecology, 2022, 41(1):42-49.] DOI:10.13292/j.1000-4890.202201.003
doi: 10.13292/j.1000-4890.202201.003 |
|
[16] |
Lu H F, Zhang H S, Qin P, et al. Integrated emergy and economic evaluation of an ecological engineering system for the utilization of Spartina alterniflora[J]. Journal of Cleaner Production, 2020, 247:119592. DOI:10.1016/j.jclepro.2019.119592
doi: 10.1016/j.jclepro.2019.119592 |
[17] |
Liu M Y, Mao D H, Wang Z M, et al. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images[J]. Remote Sensing, 2018, 10(12):1933. DOI: 10.3390/rs10121933
doi: 10.3390/rs10121933 |
[18] | 赵广琦, 张利权, 梁霞. 芦苇与入侵植物互花米草的光合特性比较[J]. 生态学报, 2005, 25(7):1604-1611. |
[Zhao G Q, Zhang L Q, Liang X. A comparison of photosynthetic characteristics between an invasive plant Spartina alterniflora and an indigenous plant Phragmites australis[J]. Acta Ecologica Sinica, 2005, 25(7):1604-1611.] DOI:10.3321/j.issn:1000-0933.2005.07.011
doi: 10.3321/j.issn:1000-0933.2005.07.011 |
|
[19] |
Chen X P, Sun J, Wang Y, et al. Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China[J]. Journal of Microbiology, 2018, 56(7):507-515. DOI:10.1007/s12275-018-8062-y
doi: 10.1007/s12275-018-8062-y pmid: 29948827 |
[20] | 王刚, 杨文斌, 王国祥, 等. 互花米草海向入侵对土壤有机碳组分、来源和分布的影响[J]. 生态学报, 2013, 33(8):2474-2483. |
[Wang G, Yang W B, Wang G X, et al. The effects of Spartina alterniflora seaward invasion on soil organic carbon fractions, sources and distribution[J]. Acta Ecologica Sinica, 2013, 33(8):2474-2483.] DOI:10.5846/stxb201201100056
doi: 10.5846/stxb201201100056 |
|
[21] |
Ge Y Q, Pan H, Zhang J, et al. Exotic Spartina alterniflora invasion changes temporal dynamics and composition of spider community in a salt marsh of Yangtze Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2020, 239:106755. DOI:10.1016/j.ecss.2020.106755
doi: 10.1016/j.ecss.2020.106755 |
[22] | 周在明, 杨燕明, 陈本清. 滩涂湿地入侵种互花米草植被覆盖度的高空间分辨率遥感估算[J]. 生态学报, 2017, 37(2):505-512. |
[Zhou Z M, Yang Y M, Chen B Q. Estimating the Spartina alterniflora fractional vegetation cover using high spatial resolution remote sensing in a coastal wetland[J]. Acta Ecologica Sinica, 2017, 37(2):505-512.] DOI:10.5846/stxb201507271566
doi: 10.5846/stxb201507271566 |
|
[23] | 周在明, 杨燕明, 陈本清. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究[J]. 遥感技术与应用, 2017, 32(4):714-720. |
[Zhou Z M, Yang Y M, Chen B Q. Research on vegetation extraction and fractional vegetation cover of Spartina alterniflora using UAV images[J]. Remote Sensing Technology and Application, 2017, 32(4):714-720.] DOI:10.11873/j.issn.1004-0323.2017.4.0714
doi: 10.11873/j.issn.1004-0323.2017.4.0714 |
|
[24] |
Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2):119-126. DOI:10.1016/0034-4257(94)90134-1
doi: 10.1016/0034-4257(94)90134-1 |
[25] |
Proença B, Frappart F, Lubac B, et al. Potential of high-resolution Pléiades imagery to monitor salt marsh evolution after spartina invasion[J]. Remote Sensing, 2019, 11(8):968. DOI:10.3390/rs11080968
doi: 10.3390/rs11080968 |
[26] |
Rapinel S, Clément B, Magnanon S, et al. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image[J]. Journal of Environmental Management, 2014, 144:236-246. DOI:10.1016/j.jenvman.2014.05.027
doi: 10.1016/j.jenvman.2014.05.027 pmid: 24973612 |
[27] |
Wang A Q, Chen J D, Jing C W, et al. Monitoring the invasion of Spartina alterniflora from 1993 to 2014 with Landsat TM and SPOT 6 satellite data in Yueqing Bay, China[J]. Plos One, 2015, 10(8):e0135538. DOI:10.1371/journal.pone.0135538
doi: 10.1371/journal.pone.0135538 |
[28] |
Mao D H, Liu M Y, Wang Z M, et al. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: Spatiotemporal patterns and human prevention[J]. Sensors (Basel, Switzerland), 2019, 19(10):E2308. DOI:10.3390/s19102308
doi: 10.3390/s19102308 |
[29] | Vapnik V N, Chervonenkis A. A note on one class of perceptrons[J]. Automation and Remote Control, 1964, 25(1). |
[30] |
Tian Y L, Jia M M, Wang Z M, et al. Monitoring invasion process of Spartina alterniflora by seasonal sentinel-2 imagery and an object-based random forest classification[J]. Remote Sensing, 2020, 12(9):1383. DOI:10.3390/rs12091383
doi: 10.3390/rs12091383 |
[31] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45:5-32. DOI:10.1023/A:1010933404324
doi: 10.1023/A:1010933404324 |
[32] |
Bansal S, Katyal D, Garg J K, et al. A novel strategy for wetland area extraction using multispectral MODIS data[J]. Remote Sensing of Environment, 2017, 200:183-205. DOI:10.1016/j.rse.2017.07.034
doi: 10.1016/j.rse.2017.07.034 |
[33] |
Bradley B A. Remote detection of invasive plants: A review of spectral, textural and phenological approaches[J]. Biological Invasions, 2014, 16(7):1411-1425. DOI:10.1007/s10530-013-0578-9
doi: 10.1007/s10530-013-0578-9 |
[34] |
Ouyang Z T, Gao Y, Xie X, et al. Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland[J]. Plos One, 2013, 8(6):e67315. DOI:10.1371/journal.pone.0067315
doi: 10.1371/journal.pone.0067315 |
[35] |
Tian J Y, Wang L, Yin D M, et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion[J]. Remote Sensing of Environment, 2020, 242:111745. DOI:10.1016/j.rse.2020.111745
doi: 10.1016/j.rse.2020.111745 |
[36] | 王敏钰, 罗毅, 张正阳, 等. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报, 2022, 26(3):431-455. |
[Wang M Y, Luo Y, Zhang Z Y, et al. Recent advances in remote sensing of vegetation phenology: Retrieval algorithm and validation strategy[J]. National Remote Sensing Bulletin, 2022, 26(3):431-455.] | |
[37] |
Nguyen L H, Joshi D R, Clay D E, et al. Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier[J]. Remote Sensing of Environment, 2020, 238:111017. DOI:10.1016/j.rse.2018.12.016
doi: 10.1016/j.rse.2018.12.016 |
[38] |
边增淦, 王文, 江渊. 黑河流域中游地区作物种植结构的遥感提取[J]. 地球信息科学学报, 2019, 21(10):1629-1641.
doi: 10.12082/dqxxkx.2019.190183 |
[Bian Z G, Wang W, Jiang Y. Remote sensing of cropping structure in the middle reaches of the Heihe River Basin[J]. Journal of Geo-information Science, 2019, 21(10):1629-1641.] DOI:10.12082/dqxxkx.2019.190183
doi: 10.12082/dqxxkx.2019.190183 |
|
[39] | 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4):19-25. |
[Chao Z H, Che M L, Hou S F. Brief review of vegetation phenological information extraction software based on time series remote sensing data[J]. Remote Sensing for Natural Resources, 2021, 33(4):19-25.] DOI:10.6046/zrzyyg.2020382
doi: 10.6046/zrzyyg.2020382 |
|
[40] |
Xu R L, Zhao S Q, Ke Y H. A simple phenology-based vegetation index for mapping invasive Spartina alterniflora using google earth engine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14:190-201. DOI:10.1109/JSTARS.2020.3038648
doi: 10.1109/JSTARS.2020.3038648 |
[41] |
Sun C, Li J L, Liu Y X, et al. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series[J]. Remote Sensing of Environment, 2021, 256:112320. DOI:10.1016/j.rse.2021.112320
doi: 10.1016/j.rse.2021.112320 |
[42] |
Sun C, Li J L, Cao L D, et al. Evaluation of vegetation index-based curve fitting models for accurate classification of salt marsh vegetation using sentinel-2 time-series[J]. Sensors (Basel, Switzerland), 2020, 20(19):5551. DOI:10.3390/s20195551
doi: 10.3390/s20195551 |
[43] |
刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008 |
[Liu R Q, Li J L, Sun C, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7):1680-1692.] DOI:10.11821/dlxb202107008
doi: 10.11821/dlxb202107008 |
|
[44] |
Huete A R. A Soil-adjusted Vegetation Index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309. DOI:10.1016/0034-4257(88)90106-X
doi: 10.1016/0034-4257(88)90106-X |
[45] |
Chen B Q, Xiao X M, Li X P, et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:104-120. DOI:10.1016/j.isprsjprs.2017.07.011
doi: 10.1016/j.isprsjprs.2017.07.011 |
[46] | 李艳, 张成才, 罗蔚然, 等. 基于改进最大值法合成NDVI的夏玉米物候期遥感监测[J]. 农业工程学报, 2019, 35(14):159-165. |
[Li Y, Zhang C C, Luo W R, et al. Summer maize phenology monitoring based on normalized difference vegetation index reconstructed with improved maximum value composite[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14):159-165.] DOI:10.11975/j.issn.1002-6819.2019.14.020
doi: 10.11975/j.issn.1002-6819.2019.14.020 |
|
[47] |
Schafer R W. What is a Savitzky-Golay filter?[J]. IEEE Signal Processing Magazine, 2011, 28(4):111-117. DOI:10.1109/MSP.2011.941097
doi: 10.1109/MSP.2011.941097 |
[48] |
董迪, 曾纪胜, 魏征, 等. 联合星载光学和SAR影像的漳江口红树林与互花米草遥感监测[J]. 热带海洋学报, 2020, 39(2):107-117.
doi: 10.11978/2019063 |
[Dong D, Zeng J S, Wei Z, et al. Integrating spaceborne optical and SAR imagery for monitoring mangroves and Spartina alterniflora in Zhangjiang Estuary[J]. Journal of Tropical Oceanography, 2020, 39(2):107-117.] DOI:10.11978/2019063
doi: 10.11978/2019063 |
|
[49] | 王佳鹏, 施润和, 张超, 等. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用, 2017, 32(6):1056-1063. |
[Wang J P, Shi R H, Zhang C, et al. Study on the inversion of chlorophyll content of Spartina alterniflora leaf in the Yangtze River Estuary wetland based on spectral analysis[J]. Remote Sensing Technology and Application, 2017, 32(6):1056-1063.] DOI:10.11873/j.issn.1004-0323.2017.6.1056
doi: 10.11873/j.issn.1004-0323.2017.6.1056 |
|
[50] |
Ren G B, Zhao Y J, Wang J B, et al. Ecological effects analysis of Spartina alterniflora invasion within Yellow River delta using long time series remote sensing imagery[J]. Estuarine, Coastal and Shelf Science, 2021, 249:107111. DOI:10.1016/j.ecss.2020.107111
doi: 10.1016/j.ecss.2020.107111 |
[51] |
Liu X, Liu H Y, Datta P, et al. Mapping an invasive plant Spartina alterniflora by combining an ensemble one-class classification algorithm with a phenological NDVI time-series analysis approach in middle coast of Jiangsu, China[J]. Remote Sensing, 2020, 2020(12):4010. DOI:10.3390/rs12244010
doi: 10.3390/rs12244010 |
[52] | 欧洲航天局. 哥白尼开放存取中心[EB/OL]. https://sci-hub.copernicus.eu/dhus/#/home/, 2021-03-03. |
[European SpaceAgency. Copernicus Open Access Hub[EB/OL]. https://scihub.copernicus.eu/dhus/#/home/, 2021-03-03.] | |
[53] | 潘卫华, 陈家金, 王岩. 近20年福建红树林和互花米草群落时空变化及景观特征[J]. 生态与农村环境学报, 2020, 36(11):1428-1436. |
[Pan W H, Chen J J, Wang Y. Analysis of spatio-temporal dynamical change and landscape characteristics of Mangroves and Spartina alterniflora in Fujian based on satellite imageries from 1999 to 2018[J]. Journal of Ecology and Rural Environment, 2020, 36(11):1428-1436.] DOI:10.19741/j.issn.1673-4831.2020.0487
doi: 10.19741/j.issn.1673-4831.2020.0487 |
|
[54] | 王维奇, 王纯, 仝川, 等. 闽江河口区盐—淡水梯度下芦苇沼泽土壤有机碳特征[J]. 湿地科学, 2012, 10(2):164-169. |
[Wang W Q, Wang C, Tong C, et al. Soil organic carbon along a salinity gradient in Phragmites australis marsh in the Minjiang River Estuary[J]. Wetland Science, 2012, 10(2):164-169.] DOI:10.13248/j.cnki.wetlandsci.2012.02.005
doi: 10.13248/j.cnki.wetlandsci.2012.02.005 |
|
[55] | 吴德力, 沈永明, 杜永芬, 等. 福建省罗源湾互花米草扩展过程及其特征分析[J]. 海洋学报, 2013, 35(6):113-120. |
[Wu D L, Shen Y M, Du Y F, et al. The expanding process and characteristics of Spartina alterniflora in Luoyuan Bay of Fujian Province, China[J]. Acta Oceanologica Sinica, 2013, 35(6):113-120.] DOI:10.3969/j.issn.0253-4193.2013.06.011
doi: 10.3969/j.issn.0253-4193.2013.06.011 |
|
[56] | 陈远丽, 路春燕, 刘金福, 等. 漳江口湿地变化的遥感监测[J]. 森林与环境学报, 2019, 39(1):61-69. |
[Chen Y L, Lu C Y, Liu J F, et al. Remote sensing monitoring of Zhangjiang Estuary Wetland[J]. Journal of Forest and Environment, 2019, 39(1):61-69.] DOI:10.13324/j.cnki.jfcf.2019.01.011
doi: 10.13324/j.cnki.jfcf.2019.01.011 |
|
[57] | 何涛, 孙志高, 李家兵, 等. 闽江河口不同淹水环境下典型湿地植物-土壤系统全硫含量空间分布特征[J]. 水土保持学报, 2016, 30(5):246-254. |
[He T, Sun Z G, Li J B, et al. Spatial distributions of total sulfur contents in plant-soil systems of the typical marshes with different flooding regimes in the Min River Estuary[J]. Journal of Soil and Water Conservation, 2016, 30(5):246-254.] DOI:10.13870/j.cnki.stbcxb.2016.05.041
doi: 10.13870/j.cnki.stbcxb.2016.05.041 |
[1] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[2] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[3] | 尹雄, 陈帮乾, 古晓威, 云挺, 吴志祥, 陈岳, 赖虹燕, 寇卫利. 基于GEE平台LandTrendr算法的海南岛森林扰动快速监测方法及分析[J]. 地球信息科学学报, 2023, 25(10): 2093-2106. |
[4] | 张歆越, 高晓路, 柴琪, 宋敦江. 中国地级城市建成区蓝绿空间时空格局及其气候影响因素分析[J]. 地球信息科学学报, 2023, 25(1): 190-207. |
[5] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[6] | 刘佳, 伍宇明, 高星, 司文涛. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7): 1275-1285. |
[7] | 杨泽航, 王文, 鲍健雄. 融合多源遥感数据的黑河中游地区生长季早期作物识别[J]. 地球信息科学学报, 2022, 24(5): 996-1008. |
[8] | 詹琪琪, 赵伟, 杨梦娇, 付浩, 李昕娟, 熊东红. 雅鲁藏布江中部流域土地沙化遥感识别[J]. 地球信息科学学报, 2022, 24(2): 391-404. |
[9] | 姜伊兰, 陈保旺, 黄玉芳, 崔佳琪, 郭宇龙. 基于Google Earth Engine和NDVI时序差异指数的作物种植区提取[J]. 地球信息科学学报, 2021, 23(5): 938-947. |
[10] | 张亚, 刘纪平, 周亮, 王勇, 李鹏飞. 基于DBSCAN算法的北京市顺丰快递服务设施集群识别与空间特征分析[J]. 地球信息科学学报, 2020, 22(8): 1630-1641. |
[11] | 汪小英, 李小漫, 沈镭, 王宜龙. 长江经济带城乡一体化对能源效率的空间效应分析[J]. 地球信息科学学报, 2020, 22(11): 2188-2198. |
[12] | 关庆锋, 任书良, 姚尧, 梁迅, 周剑锋, 袁泽皓, 戴良洋. 耦合手机信令数据和房价数据的城市不同经济水平人群行为活动模式研究[J]. 地球信息科学学报, 2020, 22(1): 100-112. |
[13] | 何昭欣, 张淼, 吴炳方, 邢强. Google Earth Engine支持下的江苏省夏收作物遥感提取[J]. 地球信息科学学报, 2019, 21(5): 752-766. |
[14] | 姚红岩, 刘浦东, 施润和, 张超. 基于高分辨率遥感影像的湿地互花米草-芦苇混合交错带提取方法[J]. 地球信息科学学报, 2017, 19(10): 1375-1381. |
[15] | 贾铎, 牟守国, 赵华. 基于SSA-Mann Kendall的草原露天矿区NDVI时间序列分析[J]. 地球信息科学学报, 2016, 18(8): 1110-1122. |
|