地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (6): 1164-1175.doi: 10.12082/dqxxkx.2023.230054
• 专刊:地理时空知识图谱理论方法与应用 • 上一篇 下一篇
收稿日期:
2023-02-10
修回日期:
2023-04-19
出版日期:
2023-06-25
发布日期:
2023-06-02
通讯作者:
*谷岩岩(1989— ),男,江苏淮安人,博士,研究方向为城市知识图谱构建。E-mail: yyg@whu.edu.cn作者简介:
罗秋雨(1997— ),女,四川达州人,硕士生,主要从事空间地理智能研究。E-mail: luoqiuyu2020@email.szu.edu.cn
基金资助:
LUO Qiuyu1(), YUE Yang1,2, GU Yanyan1,*(
)
Received:
2023-02-10
Revised:
2023-04-19
Online:
2023-06-25
Published:
2023-06-02
Contact:
*GU Yanyan, E-mail: Supported by:
摘要:
知识图谱作为人工智能技术与应用中重要的数据基础设施,已经成为地理科学领域的一个研究热点。目前对地理知识图谱进行嵌入表达时通常使用默认的超参数(如2层网络搜索深度),但是部分地理知识图谱的网络规模和拓扑特征与通用知识图谱不同,其合理性需进一步论证。为此,本文围绕城市轨道交通人地关系,基于地铁线路网络的拓扑结构特征,结合客流数据、POI(兴趣点)数据以及建成环境数据等构建地铁出行知识图谱;利用GraphSAGE模型学习实体的多维度特征嵌入,并结合POI数据对站点分类结果进行语义识别,对比验证适合地铁出行知识图谱嵌入表达的网络搜索深度。不同于默认的 2层搜索深度,当搜索深度为3层时,本研究所构建的地铁出行知识图谱的节点嵌入效果最优。因此,地理知识图谱嵌入表达的超参数选择需要顾及时空和人类活动相关的网络规模和拓扑特征,要避免不加甄别地使用其他领域通用知识图谱的已有成果。使用3层搜索深度获得的地铁站点分类结果也更具合理的解释性,可为利用知识图谱和人工智能方法进行站点规划和客流预测提供基础。
罗秋雨, 乐阳, 谷岩岩. 城市地铁出行知识图谱嵌入表达的超参数选择[J]. 地球信息科学学报, 2023, 25(6): 1164-1175.DOI:10.12082/dqxxkx.2023.230054
LUO Qiuyu, YUE Yang, GU Yanyan. Hyperparameter Selection for Urban Metro Travel Knowledge Graph Embedding[J]. Journal of Geo-information Science, 2023, 25(6): 1164-1175.DOI:10.12082/dqxxkx.2023.230054
[1] | 张雪英, 张春菊, 吴明光, 等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学:信息科学, 2020, 50(7):1019-1032. |
[ Zhang X Y, Zhang C J, Wu M G, et al. Spatiotemporal features based geographical knowledge graph construction[J]. Scientia Sinica (Informationis), 2020, 50(7):1019-1032. ] DOI:10.1360/SSI-2019-0269
doi: 10.1360/SSI-2019-0269 |
|
[2] | 诸云强, 孙凯, 胡修棉, 等. 大规模地球科学知识图谱构建与共享应用框架研究与实践[J]. 地球信息科学学报, 2022. |
[ Zhu Y Q, Sun K, Hu X M, et al. Research and practice on the framework for the construction, sharing, and application of large-scale geoscience knowledge graphs[J]. Journal of Geo-information Science, 2022. ] DOI:10.12082/dqxxkx.2022.210696
doi: 10.12082/dqxxkx.2022.210696 |
|
[3] | 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3):582-600. |
[ Liu Q, Li Y, Duan H, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3):582-600. ] DOI:10.7544/issn1000-1239.2016.20148228
doi: 10.7544/issn1000-1239.2016.20148228 |
|
[4] | 艾瑞咨询产业数字化研究部人工智能研究组. 一图胜万言,一目了然中国知识图谱行业研究报告[C]// 艾瑞咨询系列研究报告, 2022(8):323-400. |
[ Artificial Intelligence Research Group, Industry Digitalization Research Department, iResearch Consulting. A picture is worth a thousand words, a glance at Chinese knowledge graph industry research report[C]// iResearch Consulting Research Report Series, 2022(8):323-400. ] DOI:10.26914/c.cnkihy.2022.035148
doi: 10.26914/c.cnkihy.2022.035148 |
|
[5] | 王益鹏, 张雪英, 党玉龙, 等. 顾及时空过程的台风灾害事件知识图谱表示方法[J]. 地球信息科学学报, 2022. |
[ Wang Y P, Zhang X Y, Dang Y L, et al. Knowledge graph representation of typhoon disaster events considering spatial and temporal processes[J]. Journal of Geo-information Science, 2022. ] https://kns.cnki.net/kcms/detail/11.5809.p.20221103.1137.006.html. DOI:10.12082/dqxxkx.2022.210800
doi: 10.12082/dqxxkx.2022.210800 |
|
[6] |
王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1):16-28.
doi: 10.12082/dqxxkx.2021.200632 |
[ Wang Z H, Yang X M, Zhou C H. Geographic knowledge graph for remote sensing big data[J]. Journal of Geo-information Science, 2021, 23(1):16-28. ] DOI:10.12082/dqxxkx.2021.200632
doi: 10.12082/dqxxkx.2021.200632 |
|
[7] | 杨玉基, 许斌, 胡家威, 等. 一种准确而高效的领域知识图谱构建方法[J]. 软件学报, 2018, 29(10):2931-2947. |
[ Yang Y J, Xu B, Hu J W, et al. Accurate and efficient method for constructing domain knowledge graph[J]. Journal of Software, 2018, 29(10):2931-2947. ] DOI:10.13328/j.cnki.jos.005552
doi: 10.13328/j.cnki.jos.005552 |
|
[8] | 蒋秉川, 万刚, 许剑, 等. 多源异构数据的大规模地理知识图谱构建[J]. 测绘学报, 2018, 47(8):1051-1061. |
[ Jiang B C, Wan G, Xu J, et al. Geographic knowledge graph building extracted from multi-sourced heterogeneous data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8):1051-1061. ] DOI:10.11947/j.AGCS.2018.20180113
doi: 10.11947/j.AGCS.2018.20180113 |
|
[9] |
陆锋, 余丽, 仇培元. 论地理知识图谱[J]. 地球信息科学学报, 2017, 19(6):723-734.
doi: 10.3724/SP.J.1047.2017.00723 |
[ Lu F, Yu L, Qiu P Y. On geographic knowledge graph[J]. Journal of Geo-information Science, 2017, 19(6):723-734. ] DOI:10.3724/SP.J.1047.2017.00723
doi: 10.3724/SP.J.1047.2017.00723 |
|
[10] | 高嘉良, 仇培元, 余丽, 等. 基于旅游知识图谱的可解释景点推荐[J]. 中国科学:信息科学, 2020, 50(7):1055-1068. |
[ Gao J L, Qiu P Y, Yu L, et al. An interpretable attraction recommendation method based on knowledge graph[J]. Scientia Sinica (Informationis), 2020, 50(7):1055-1068. ] DOI:10.1360/SSI-2019-0268
doi: 10.1360/SSI-2019-0268 |
|
[11] |
Bordes A, Usunier N, Garcia-Durán A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. New York:ACM, 2013:2787-2795. DOI:10.5555/2999792.2999923
doi: 10.5555/2999792.2999923 |
[12] |
刘俊楠, 刘海砚, 陈晓慧, 等. 面向多源地理空间数据的知识图谱构建[J]. 地球信息科学学报, 2020, 22(7):1476-1486.
doi: 10.12082/dqxxkx.2020.190565 |
[ Liu J N, Liu H Y, Chen X H, et al. The construction of knowledge graph towards multi-source geospatial data[J]. Journal of Geo-information Science, 2020, 22(7):1476-1486. ] DOI:10.12082/dqxxkx.2020.190565
doi: 10.12082/dqxxkx.2020.190565 |
|
[13] |
Zhang X Y, Huang Y, Zhang C J, et al. Geoscience Knowledge Graph (GeoKG): Development, construction and challenges[J]. Transactions in GIS, 2022, 26(6):2480-2494. DOI:10.1111/tgis.12985
doi: 10.1111/tgis.12985 |
[14] | Liu Y, Ding J, Li Y. Knowledge-driven site selection via urban knowledge graph[EB/OL]. 2021: arXiv: 2111.00787. https://arxiv.org/abs/2111.00787 |
[15] |
Yin D, Jiang R H, Deng J W, et al. MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction[J]. GeoInformatica, 2023, 27(1):77-105. DOI:10.1007/s10707-022-00466-1
doi: 10.1007/s10707-022-00466-1 |
[16] | Liu C, Gao C, Jin D, et al. Improving location recommendation with urban knowledge graph[EB/OL]. 2021: arXiv: 2111.01013. https://arxiv.org/abs/2111.01013 |
[17] |
Wang H D, Yu Q H, Liu Y, et al. Spatio-temporal urban knowledge graph enabled mobility prediction[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2021, 5(4):1-24. DOI:10.1145/3494993
doi: 10.1145/3494993 |
[18] | Kochsiek A, Niesel F, Gemulla R. Start small, think big: On hyperparameter optimization for large-scale knowledge graph embeddings[EB/OL]. 2022: arXiv: 2207.04979. https://arxiv.org/abs/2207.04979 |
[19] | Chen Y, Wu L, Zaki M J. Natural question generation with reinforcement learning based graph-to-sequence model[EB/OL]. 2019: arXiv: 1910.08832. https://arxiv.org/abs/1910.08832 |
[20] |
Fei Z C, Zhang Q, Zhou Y Q. Iterative GNN-based decoder for question generation[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021:2573-2582. DOI:10.18653/v1/2021.emnlp-main.201
doi: 10.18653/v1/2021.emnlp-main.201 |
[21] | 方滨兴, 贾焰, 韩毅. 社交网络分析核心科学问题、研究现状及未来展望[J]. 中国科学院院刊, 2015, 30(2):187-199. |
[ Fang B X, Jia Y, Han Y. Social networking analysis, core scientific issues, current research and future perspectives[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(2):187-199. ] DOI:10.16418/j.issn.1000-3045.2015.02.007
doi: 10.16418/j.issn.1000-3045.2015.02.007 |
|
[22] | 吕鹏辉, 张士靖. 学科知识网络研究(Ⅰ)引文网络的结构、特征与演化[J]. 情报学报, 2014, 33(4):340-348. |
[ Lv P H, Zhang S J. Scientific knowledge networks in LIS (I): Case study on the structure, characteristics and evolution of citation networks[J]. Journal of the China Society for Scientific and Technical Information, 2014, 33(4):340-348. ] DOI:10.3772/j.issn.10000135.2014.04.001
doi: 10.3772/j.issn.10000135.2014.04.001 |
|
[23] | Abu-El-Haija S, Kapoor A, Perozzi B, et al. N-GCN: Multi-scale graph convolution for semi-supervised node classification[EB/OL]. 2018: arXiv: 1802.08888. https://arxiv.org/abs/1802.08888 |
[24] |
Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:1025-1035. DOI: 10.5555/3294771.3294869
doi: 10.5555/3294771.3294869 |
[25] | Kapoor A, Ben X, Liu L, et al. Examining COVID-19 forecasting using spatio-temporal graph neural networks[EB/OL]. 2020: arXiv: 2007.03113. https://arxiv.org/abs/2007.03113 |
[26] |
Sun Z Q, Wang C M, Hu W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1):222-229. DOI:10.1609/aaai.v34i01.5354
doi: 10.1609/aaai.v34i01.5354 |
[27] |
Gu W W, Tandon A, Ahn Y Y, et al. Principled approach to the selection of the embedding dimension of networks[J]. Nature Communications, 2021, 12:3772. DOI:10.1038/s41467-021-23795-5
doi: 10.1038/s41467-021-23795-5 pmid: 34145234 |
[28] |
Teru K K, Denis E G, Hamilton W L. Inductive relation prediction by subgraph reasoning[C]// Proceedings of the 37th International Conference on Machine Learning, 2020:9448-9457. DOI:10.5555/3524938.3525814
doi: 10.5555/3524938.3525814 |
[29] |
Ying R, He R N, Chen K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018:974-983. DOI:10.1145/3219819.3219890
doi: 10.1145/3219819.3219890 |
[30] | 侯秀芳, 冯晨, 左超, 等. 2022年中国内地城市轨道交通线路概况[J]. 都市快轨交通, 2023, 36(1):9-13. |
[ Hou X F, Feng C, Zuo C, et al. Statistical analysis of urban rail transit in Chinese mainland in 2022[J]. Urban Rapid Rail Transit, 2023, 36(1):9-13. ] DOI:10.3969/j.issn.1672-6073.2023.01.002
doi: 10.3969/j.issn.1672-6073.2023.01.002 |
|
[31] |
Kamruzzaman M, Deilami K, Yigitcanlar T. Investigating the urban heat island effect of transit oriented development in Brisbane[J]. Journal of Transport Geography, 2018, 66:116-124. DOI:10.1016/j.jtrangeo.2017.11.016
doi: 10.1016/j.jtrangeo.2017.11.016 |
[32] |
Higgins C D, Kanaroglou P S. A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region[J]. Journal of Transport Geography, 2016, 52:61-72. DOI: 10.1016/j.jtrangeo.2016.02.012
doi: 10.1016/j.jtrangeo.2016.02.012 |
[33] |
Xiao L Z, Lo S, Zhou J P, et al. Predicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China[J]. Environment and Planning B: Urban Analytics and City Science, 2021, 48(8):2363-2384. DOI: 10.1177/2399808320977866
doi: 10.1177/2399808320977866 |
[34] |
Atkinson-Palombo C, Kuby M J. The geography of advance transit-oriented development in metropolitan Phoenix, Arizona, 2000-2007[J]. Journal of Transport Geography, 2011, 19(2):189-199. DOI:10.1016/j.jtrangeo.2010.03.014
doi: 10.1016/j.jtrangeo.2010.03.014 |
[35] | 方勇. 手机信令数据在轨道站点客流与土地利用关联性研究中的应用——以工作日早高峰进站客流为例[D]. 深圳: 深圳大学, 2017. |
[ Fang Y. The applications of cell phone signaling data in the research of the correlation between metro station passenger flow and land use: A case of passenger flow during the weekday morning rush[D]. Shenzhen: Shenzhen University, 2017. ] | |
[36] | 谷岩岩, 焦利民, 董婷, 等. 基于多源数据的城市功能区识别及相互作用分析[J]. 武汉大学学报·信息科学版, 2018, 43(7):1113-1121. |
[ Gu Y Y, Jiao L M, Dong T, et al. Spatial distribution and interaction analysis of urban functional areas based on multi-source data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1113-1121. ] DOI:10.13203/j.whugis20160192
doi: 10.13203/j.whugis20160192 |
|
[37] |
Rousseeuw P J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20:53-65. DOI:10.1016/0377-0427(87)90125-7
doi: 10.1016/0377-0427(87)90125-7 |
[38] |
Zhuang D Y, Hao S Y, Lee D H, et al. From compound word to metropolitan station: Semantic similarity analysis using smart card data[J]. Transportation Research Part C: Emerging Technologies, 2020, 114:322-337. DOI:10.1016/j.trc.2020.02.017
doi: 10.1016/j.trc.2020.02.017 |
[39] |
Kumar P P, Sekhar C R, Parida M. Identification of neighborhood typology for potential transit-oriented development[J]. Transportation Research Part D: Transport and Environment, 2020, 78:102186. DOI:10.1016/j.trd.2019.11.015
doi: 10.1016/j.trd.2019.11.015 |
[40] |
Jeffrey D, Boulangé C, Giles-Corti B, et al. Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods[J]. Journal of Transport Geography, 2019, 76:221-231. DOI:10.1016/j.jtrangeo.2019.03.009
doi: 10.1016/j.jtrangeo.2019.03.009 |
[41] |
An D, Tong X, Liu K, et al. Understanding the impact of built environment on metro ridership using open source in Shanghai[J]. Cities, 2019, 93:177-187. DOI:10.1016/j.cities.2019.05.013
doi: 10.1016/j.cities.2019.05.013 |
[42] |
Kamruzzaman M, Baker D, Washington S, et al. Advance transit oriented development typology: Case study in Brisbane, Australia[J]. Journal of Transport Geography, 2014, 34:54-70. DOI:10.1016/j.jtrangeo.2013.11.002
doi: 10.1016/j.jtrangeo.2013.11.002 |
[43] |
Yin G M, Huang Z, Bao Y, et al. ConvGCN-RF: A hybrid learning model for commuting flow prediction considering geographical semantics and neighborhood effects[J]. Geoinformatica. 2022:1-21. DOI:10.1007/s10707-022-00467-0
doi: 10.1007/s10707-022-00467-0 |
[44] |
Zhu D, Zhang F, Wang S Y, et al. Understanding place characteristics in geographic contexts through graph convolutional neural networks[J]. Annals of the American Association of Geographers, 2020, 110(2):408-420. DOI: 10.1080/24694452.2019.1694403
doi: 10.1080/24694452.2019.1694403 |
[1] | 张春菊, 刘文聪, 张雪英, 叶鹏, 汪陈, 朱少楠, 张达玉. 基于本体的金矿知识图谱构建方法[J]. 地球信息科学学报, 2023, 25(7): 1269-1281. |
[2] | 唐曾杨, 艾廷华, 徐海江. 地理知识图谱下的建筑群空间分布模式推理[J]. 地球信息科学学报, 2023, 25(6): 1202-1214. |
[3] | 王益鹏, 张雪英, 党玉龙, 叶鹏. 顾及时空过程的台风灾害事件知识图谱表示方法[J]. 地球信息科学学报, 2023, 25(6): 1228-1239. |
[4] | 杨玉莹, 赵学胜, 刘会园, 彭舒, 吕源鑫. 基于地表覆盖数据的湿地知识图谱构建[J]. 地球信息科学学报, 2023, 25(6): 1240-1251. |
[5] | 刘建湘, 陈晓慧, 刘海砚, 张兵, 徐立, 刘涛, 付雨萌. 基于轨迹语义的船舶活动知识图谱构建[J]. 地球信息科学学报, 2023, 25(6): 1252-1266. |
[6] | 陆锋, 诸云强, 张雪英. 时空知识图谱研究进展与展望[J]. 地球信息科学学报, 2023, 25(6): 1091-1105. |
[7] | 蒋秉川, 黄梓航, 任琰, 孙勇, 范爱民. 基于时序超图模型的战场环境多层次知识建模方法[J]. 地球信息科学学报, 2023, 25(6): 1148-1163. |
[8] | 陈晖萱, 郭旦怀, 葛世寅, 王婧, 王彦棡, 陈峰, 杨微石. M2T多源知识图谱融合的空间场景描述文本自动生成框架[J]. 地球信息科学学报, 2023, 25(6): 1176-1185. |
[9] | 诸云强, 孙凯, 胡修棉, 闾海荣, 王新兵, 杨杰, 王曙, 李威蓉, 宋佳, 苏娜, 牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践[J]. 地球信息科学学报, 2023, 25(6): 1215-1227. |
[10] | 刘宇, 李勇. 面向城市可持续发展的城市商圈/街区知识图谱构建方法与应用展望[J]. 地球信息科学学报, 2023, 25(12): 2374-2386. |
[11] | 陈晓玲, 唐丽玉, 胡颖, 江锋, 彭巍, 冯先超. 基于ALBERT模型的园林植物知识实体与关系抽取方法[J]. 地球信息科学学报, 2021, 23(7): 1208-1220. |
[12] | 郑翔天, 关思萍, 任红鸽, 徐容乐, 项波. 知识图谱在构建东北土地环境研究知识谱系中的应用[J]. 地球信息科学学报, 2021, 23(6): 1002-1016. |
[13] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[14] | 刘俊楠, 刘海砚, 陈晓慧, 郭漩, 郭文月, 朱新铭, 赵清波. 面向多源地理空间数据的知识图谱构建[J]. 地球信息科学学报, 2020, 22(7): 1476-1486. |
[15] | 黄娟, 陈崇成, 叶晓燕, 马腾. “民国清流”名人文化主题数据的组织和可视化方法[J]. 地球信息科学学报, 2020, 22(5): 954-966. |
|