地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (10): 1954-1967.doi: 10.12082/dqxxkx.2023.230070
收稿日期:
2023-02-16
修回日期:
2023-05-16
出版日期:
2023-10-25
发布日期:
2023-09-22
通讯作者:
* 向隆刚(1976—),男,博士,教授,主要从事空间数据库、轨迹数据时空挖掘研究。E-mail: geoxlg@whu.edu.cn作者简介:
陈欣(1995—),女,湖南怀化人,博士生,主要从事轨迹大数据挖掘研究。E-mial: cx_free342@whu.edu.cn
基金资助:
CHEN Xin(), XIANG Longgang*(
), JIAO Fengwei
Received:
2023-02-16
Revised:
2023-05-16
Online:
2023-10-25
Published:
2023-09-22
Contact:
* XIANG Longgang, E-mail: Supported by:
摘要:
OpenStreetMap(OSM)路网数据是一个开放性的数据集,旨在为全球用户提供免费的数字地图资源,但路口转向信息的缺失,成为制约其进一步服务于车辆导航和路径规划的瓶颈。为此,本文提出一种基于地图匹配和字符串映射的路口转向探测方法,通过挖掘众源GNSS轨迹数据在交通路口的动态连接信息,为OSM路网结构赋予转向关系。首先,基于一种自上而下的四叉树分裂思想,设计了OSM路口结构探测方法,进而将路口结构简化为一个连接点;在此基础上改进HMM地图匹配算法,识别漂移异常的轨迹序列,从而将低频、高噪的众源轨迹投影到OSM路段上;接着,引入面向路口的路段字符编码技术,将路口相关的轨迹映射为转向过程中的方向字符串,进一步借助于最优路径分析思想,设计了空字符的信息增强处理方法还原低频轨迹行驶的路线信息,以有效提高短路段的轨迹支持度;最后,直接针对轨迹方向字符串,通过字符串匹配挖掘轨迹在目标路口的转向类别,实现OSM路网的转向信息增强。本文将复杂的路口转向关系识别转化为简单的字符串匹配,基于上海市数据的试验表明,该方法可以识别结构与大小各异的路口转向关系,其精确率达到90%,召回率超过98%,F1值超94%。
陈欣, 向隆刚, 焦凤伟. 基于众源轨迹的OSM路网转向信息增强[J]. 地球信息科学学报, 2023, 25(10): 1954-1967.DOI:10.12082/dqxxkx.2023.230070
CHEN Xin, XIANG Longgang, JIAO Fengwei. Turning Information Enhancement of OpenStreetMap Road Network Based on Crowdsourcing Trajectory Data[J]. Journal of Geo-information Science, 2023, 25(10): 1954-1967.DOI:10.12082/dqxxkx.2023.230070
表4
不同参数的实验结果对比
方法 | 评价指标 | 支持度阈值SUP | |||||
---|---|---|---|---|---|---|---|
1 | 5 | 10 | 20 | 30 | 40 | ||
无信息 增强处理 | Precision | 88.51 | 91.64 | 94.01 | 96.11 | 96.68 | 96.83 |
Recall | 94.91 | 80.64 | 70.48 | 57.57 | 49.05 | 42.86 | |
F1-score | 91.60 | 85.79 | 80.56 | 72.01 | 65.08 | 59.42 | |
有信息 增强处理 | Precision | 89.02 | 90.29 | 90.43 | 90.90 | 91.73 | 92.43 |
Recall | 99.91 | 98.53 | 96.22 | 89.64 | 83.51 | 77.69 | |
F1-score | 94.15 | 94.23 | 93.24 | 90.27 | 87.43 | 84.42 |
[1] | Zhang Y J, Li X M, Wang A M, et al. Density and diversity of OpenStreetMap Road networks in China[J]. Journal of Urban Management, 2015, 4(2):135-146. DOI:10.1016/j.jum.2015.10.001 |
[2] | Botta F, Gutiérrez-Roig M. Modelling urban vibrancy with mobile phone and OpenStreetMap data[J]. PLoS One, 2021, 16(6):e0252015. DOI:10.1371/journal.pone.0252015 |
[3] | 陈舒燕. 基于OpenStreetMap的出行可达性分析与实现[D]. 上海: 上海师范大学, 2010. |
[Chen S Y. A web-based accessibility analysis service using OpenStreetMap data[D]. Shanghai: Shanghai Normal University, 2010.] DOI:10.7666/d.y1667221 | |
[4] |
寇培颖, 牛铮, 刘正佳, 等. 基于自发地理信息的“一带一路”区域陆路交通状况分析[J]. 地球信息科学学报, 2018, 20(8):1074-1082.
doi: 10.12082/dqxxkx.2018.180090 |
[Kou P Y, Niu Z, Liu Z J, et al. Analyzing the Land Transportation Conditions in the Belt and Road Area Based on Volunteered Geographic Information[J]. Journal of Geo-information Science, 2018, 20(8):1074-1082.] DOI:10.12082/dqxxkx.2018.180090 | |
[5] | Mobasheri A, Zipf A, Francis L. OpenStreetMap data quality enrichment through awareness raising and collective action tools—Experiences from a European project[J]. Geo-Spatial Information Science, 2018, 21(3):234-246. DOI:10.1080/10095020.2018.1493817 |
[6] | 张绛丽, 张笑非, 徐丹, 等. 基于OpenStreetMap的智能交通路网数据的构建[J]. 道路交通与安全, 2014, 14(1):41-47. |
[Zhang J L, Zhang X F, Xu D, et al. Road_net data construction for intelligent transportation based on the open street map[J]. Road Traffic & Safety, 2014, 14(1):41-47.] DOI:10.13986/j.cnki.jote.2014.01.005 | |
[7] | 庄立坚, 何兆成, 杨文臣, 等. 基于大规模浮动车数据的交叉口转向规则自动提取算法[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(5):1084-1088. |
[Zhuang L J, He Z C, Yang W C, et al. A large-scale floating car data-based algorithm of turning rule extraction at intersections[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering, 2013, 37(5):1084-1088.] DOI:10.3963/j.issn.2095-3844.2013.05.042 | |
[8] | 黄敏, 潘嘉杰, 刘芳. 基于SVM的交叉口连通关系建模[J]. 计算机工程与设计, 2017, 38(5):1319-1323. |
[Huang M, Pan J J, Liu F. Modeling for logical connectivity of intersection based on SVM[J]. Computer Engineering and Design, 2017, 38(5):1319-1323.] DOI:10.16208/j.issn1000-7024.2017.05.037 | |
[9] | 段莉琼, 雷大伟. 车辆自导航系统中加入道路转向限制的最短路径算法[J]. 海洋测绘, 2003, 23(5):12-15. |
[Duan L Q, Lei D W. The algorithm of the shortest path for turning restriction in vehicle navigation system[J]. Hydrographic Surveying and Charting, 2003, 23(5):12-15.] DOI:10.3969/j.issn.1671-3044.2003.05.004 | |
[10] | 隋东, 任刚, 邵进达. 基于GIS的城市交通网络数据模型研究[J]. 公路交通科技, 2006, 23(9):94-97. |
[Sui D, Ren G, Shao J D. Study on GIS-based data model for urban transport networks[J]. Journal of Highway and Transportation Research and Development, 2006, 23(9):94-97.] DOI:10.3969/j.issn.1002-0268.2006.09.022 | |
[11] | Efentakis A, Grivas N, Pfoser D, et al. Crowdsourcing turning-restrictions from map-matched trajectories[J]. Information Systems, 2017, 64:221-236. DOI:10.1016/j.is.2016.04.004 |
[12] | Efentakis A, Brakatsoulas S, Grivas N, et al. Crowdsourcing turning restrictions for OpenStreetMap[C]// Proceedings of the EDBT/ICDT Workshops. Athens, Greece, 2014:355-362. |
[13] | 孙智文. 基于航拍影像的道路附属设施检测技术研究[D]. 西安: 西安电子科技大学, 2018. |
[Sun Z W. Research on detection technology of road accessory facilities based on aerial image[D]. Xi'an: Xidian University, 2018.] | |
[14] | 陈兴华, 万幼川, 王晓华. 基于街景影像的交通标志识别[J]. 地理空间信息, 2014, 12(5):75-77,10. |
[Chen X H, Wan Y C, Wang X H. Traffic sign recognition based on street view image[J]. Geospatial Information, 2014, 12(5):75-77,10.] DOI:10.3969/j.issn.1672-4623.2014.05.027 | |
[15] | Naseer M, Supriadi I, Supangkat S H. Feature detection of curve traffic sign image on the bandung - jakarta highway[J]. Journal of Physics: Conference Series, 2018, 978:012083. DOI:10.1088/1742-6596/978/1/012083 |
[16] | Fathi A, Krumm J. Detecting road intersections from GPS traces[C]// Proceedings of the 6th International Conference on Geographic Information Science. New York: ACM, 2010:56-69. DOI:10.10.5555/1887961.1887966 |
[17] |
唐炉亮, 牛乐, 杨雪, 等. 利用轨迹大数据进行城市道路交叉口识别及结构提取[J]. 测绘学报, 2017, 46(6):770-779.
doi: 10.11947/j.AGCS.2017.20160614 |
[Tang L L, Niu L, Yang X, et al. Urban intersection recognition and construction based on big trace data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):770-779.] DOI:10.11947/j.AGCS.2017.20160614 | |
[18] | Wang J, Wang C L, Song X F, et al. Automatic intersection and traffic rule detection by mining motor-vehicle GPS trajectories[J]. Computers, Environment and Urban Systems, 2017, 64:19-29. DOI:10.1016/j.compenvurbsys.2016.12.006 |
[19] | 唐炉亮, 于智伟, 任畅, 等. 基于车载GPS轨迹的立体交叉口空间结构信息获取方法[J]. 交通运输工程学报, 2019, 19(5):170-179. |
[Tang L L, Yu Z W, Ren C, et al. Information acquisition method of three-dimensional intersection spatial structure based on vehicle GPS trajectory[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5):170-179.] DOI:10.19818/j.cnki.1671-1637.2019.05.017 | |
[20] | Brakatsoulas S, Pfoser D, Salas R, et al. On map-matching vehicle tracking data[C]//Proceedings of the 31st International Conference on Very Large Data Bases. New York: ACM, 2005:853-864. DOI:10.5555/1083592.1083691 |
[21] | Lou Y, Zhang C Y, Zheng Y, et al. Map-matching for low-sampling-rate GPS trajectories[C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM, 2009: 10.1145/1653771.1653820. DOI: 10.1145/1653771.1653820. |
[22] | He Z C, She X W, Zhuang L J, et al. On-line map-matching framework for floating car data with low sampling rate in urban road networks[J]. IET Intelligent Transport Systems, 2013, 7(4):404-414. DOI:10.1049/iet-its.2011.0226 |
[23] |
向隆刚, 邵晓天. 载体轨迹停留信息提取的核密度法及其可视化[J]. 测绘学报, 2016, 45(9):1122-1131.
doi: 10.11947/j.AGCS.2016.20150347 |
[Xiang L G, Shao X T. Visualization and extraction of trajectory stops based on kernel-density[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1122-1131.] DOI:10.11947/j.AGCS.2016.20150347 | |
[24] | 徐倩. GB 17761-2018《电动自行车安全技术规范》解读[J]. 中国质量技术监督, 2019(3):61-63. |
[Xu Q. Interpretation of GB 17761-2018 safety technical specification for electric bicycles[J]. China Quality Supervision, 2019(3):61-63.] | |
[25] | Zhao L S, Mao J L, Pu M, et al. Automatic calibration of road intersection topology using trajectories[C]//2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020:1633-1644. DOI:10.1109/ICDE48307.2020.00145. |
[26] |
张彩丽, 向隆刚, 李雅丽, 等. 基于出租车轨迹的可导航路网构建[J]. 测绘学报, 2021, 50(12):1650-1662.
doi: 10.11947/j.AGCS.2021.20200470 |
[Zhang C L, Xiang L G, Li Y L, et al. Construction of navigable road network based on taxi trajectories[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12):1650-1662.] DOI:10.11947/j.AGCS.2021.20200470 | |
[27] | 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012. |
[Li H. Statistical learning method[M]. Beijing: Tsinghua University Press, 2012.] | |
[28] | Mattheis S, Al-Zahid K K, Engelmann B, et al. Putting the car on the map: a scalable map matching system for the Open Source Community[C]// Proceedings of the Informatik, 2014:2109-2119. |
[29] | Yang C, Gidófalvi G. Fast map matching, an algorithm integrating hidden Markov model with precomputation[J]. International Journal of Geographical Information Science, 2018, 32(3):547-570. DOI:10.1080/13658816.2017.1400548 |
[30] | 李军, 游弋, 邓红平. 城市浮动车数据定位误差分布规律研究[J]. 科学技术与工程, 2016, 16(1):244-249. |
[Li J, You Y, Deng H P. Distribution characteristics of FCD positioning error in urban areas[J]. Science Technology and Engineering, 2016, 16(1):244-249.] DOI:10.3969/j.issn.1671-1815.2016.01.047 |
[1] | 唐璐, 许捍卫, 丁彦文. 融合多源地理大数据的城市街区综合活力评价[J]. 地球信息科学学报, 2022, 24(8): 1575-1588. |
[2] | 张彩丽, 向隆刚, 李雅丽, 林志勇. 顾及路网与轨迹多模特征的道路等级分类研究[J]. 地球信息科学学报, 2022, 24(10): 1925-1940. |
[3] | 郑诗晨, 盛业华, 吕海洋. 基于粒子滤波的行车轨迹路网匹配方法[J]. 地球信息科学学报, 2020, 22(11): 2109-2117. |
[4] | 王晓蒙, 池天河, 林晖, 邵静, 姚晓婧, 杨丽娜. 一种面向海量浮动车数据的地图匹配方法[J]. 地球信息科学学报, 2015, 17(10): 1143-1151. |
[5] | 康苹, 刘高焕. 基于耗费距离的公路网络路径分析模型研究——以珠江三角洲公路网为例[J]. 地球信息科学学报, 2007, 9(6): 54-58,132. |
|