地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (6): 1091-1105.doi: 10.12082/dqxxkx.2023.230154
• 专刊:地理时空知识图谱理论方法与应用 • 上一篇 下一篇
陆锋1,2,4,5,*(), 诸云强1,2,4, 张雪英3,4
收稿日期:
2023-03-27
修回日期:
2023-04-19
出版日期:
2023-06-25
发布日期:
2023-06-02
作者简介:
陆 锋(1970— ),男,新疆乌鲁木齐人,博士,研究员,主要从事地理空间智能、地理大数据挖掘、时空知识图谱研究。E-mail: luf@lreis.ac.cn
基金资助:
LU Feng1,2,4,5,*(), ZHU Yunqiang1,2,4, ZHANG Xueying3,4
Received:
2023-03-27
Revised:
2023-04-19
Online:
2023-06-25
Published:
2023-06-02
Contact:
*LU Feng, E-mail: Supported by:
摘要:
地理信息的不断泛化对经典的地理信息分析模式提出了巨大挑战,网络化的知识服务将逐渐成为地理信息应用的新模式,助力地理计算到社会计算的形态转变。地理知识服务需要打通人、机构、自然环境、地理实体、地域单元、社会事件之间的关联,促进知识辅助下的数据智能与计算智能。本文聚焦地理时空知识获取与形式化表达及分析的迫切需求,首先分析了时空知识图谱的基本概念与特征,认为时空知识图谱是指具有地理时空分布或位置隐喻的知识构成的有向图,即以时空分布特征为核心的知识图谱;然后提出了时空知识图谱的研究框架,该框架可实现时空大数据到时空知识服务应用的转变,包括泛在时空大数据、时空知识获取、时空知识管理、时空知识图谱、软件系统及行业应用等多个层次;接着从文本描述地理信息抽取、异构地理语义网对齐、时空知识表达与表示学习等方面,介绍了相关研究进展;结合应用实践,介绍了面向行业的时空知识图谱构建与应用途径;最后,讨论了时空知识图谱研究目前面临的关键科学问题与技术瓶颈,提出在大模型时代,构建显式的时空知识图谱,并针对行业需求开展知识推理,仍是时空知识服务的必由之路。
陆锋, 诸云强, 张雪英. 时空知识图谱研究进展与展望[J]. 地球信息科学学报, 2023, 25(6): 1091-1105.DOI:10.12082/dqxxkx.2023.230154
LU Feng, ZHU Yunqiang, ZHANG Xueying. Spatiotemporal Knowledge Graph: Advances and Perspectives[J]. Journal of Geo-information Science, 2023, 25(6): 1091-1105.DOI:10.12082/dqxxkx.2023.230154
[1] | 高松. 地理空间人工智能的近期研究总结与思考[J]. 武汉大学学报·信息科学版, 2020, 45(12):1865-1874. |
[ Gao S. A review of recent researches and reflections on geospatial artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12):1865-1874. ] DOI:10.13203/j.whugis20200597
doi: 10.13203/j.whugis20200597 |
|
[2] |
Janowicz K, Gao S, McKenzie G, et al. GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond[J]. International Journal of Geographical Information Science, 2020, 34(4):625-636. DOI:10.1080/13658816.2019.1684500
doi: 10.1080/13658816.2019.1684500 |
[3] | 程学旗, 梅宏, 赵伟, 等. 数据科学与计算智能:内涵、范式与机遇[J]. 中国科学院院刊, 2020, 35(12):1470-1481. |
[ Mei H, Zhao W, et al. Data science and computing intelligence: Concept, paradigm and opportunities[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(12):1470-1481. ] DOI:10.16418/j.issn.1000-3045.20201116005
doi: 10.16418/j.issn.1000-3045.20201116005 |
|
[4] | 陈军, 刘万增, 武昊, 等. 基础地理知识服务的基本问题与研究方向[J]. 武汉大学学报·信息科学版, 2019, 44:38-47. |
[ Chen J, Liu W Z, Wu H, et al. Basic issues and research agenda of geospatial knowledge service[J]. Geomatics and Information Science of Wuhan University, 2019, 44:38-47. ] DOI:10.13203/j.wuugis20180441
doi: 10.13203/j.wuugis20180441 |
|
[5] |
陆锋, 余丽, 仇培元. 论地理知识图谱[J]. 地球信息科学学报, 2017, 19(6):723-734.
doi: 10.3724/SP.J.1047.2017.00723 |
[ Lu F, Yu L, Qiu P Y. On geographic knowledge graph[J]. Journal of Geo-information Science, 2017, 19(6):723-734. ] DOI:10.3724/SP.J.1047.2017.00723
doi: 10.3724/SP.J.1047.2017.00723 |
|
[6] | 张雪英, 张春菊, 吴明光, 等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学:信息科学, 2020, 50(7):1019-1032. |
[ Zhang X Y, Zhang C J, Wu M G, et al. Spatio-temporal features based geographical knowledge graph construction[J]. Sci Sin Inform, 2020, 50(7):1019-1032. ] DOI:10.1360/SSI-2019-0269
doi: 10.1360/SSI-2019-0269 |
|
[7] |
王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1):16-28.
doi: 10.12082/dqxxkx.2021.200632 |
[ Wang Z H, Yang X M, Zhou C H. Geographic knowledge graph for remote sensing big data[J]. Journal of Geo-information Science, 2021, 23(1):16-28. ] DOI:10.12082/dqxxkx.2021.200632
doi: 10.12082/dqxxkx.2021.200632 |
|
[8] | 蒋秉川, 万刚, 许剑, 等. 多源异构数据的大规模地理知识图谱构建[J]. 测绘学报, 2018, 47(8):1051-1061. |
[ Jiang B C, Wang G, Xu J, et al. Geographic knowledge graph building extracted from multi-sourced heterogeneous data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8):1051-1061. ] DOI:10.11947/j.AGCS.2018.20180113
doi: 10.11947/j.AGCS.2018.20180113 |
|
[9] |
刘俊楠, 刘海砚, 陈晓慧, 等. 面向多源地理空间数据的知识图谱构建[J]. 地球信息科学学报, 2020, 22(7):1476-1486.
doi: 10.12082/dqxxkx.2020.190565 |
[ Liu J N, Liu H Y, Chen X H, et al. The Construction of knowledge graph towards multi-source geospatial data[J]. Journal of Geo-information Science, 2020, 22(7):1476-1486. ] DOI:10.12082/dqxxkx.2020.190565
doi: 10.12082/dqxxkx.2020.190565 |
|
[10] | 张永军, 王飞, 李彦胜, 等. 遥感知识图谱创建及其典型场景应用技术[J]. 遥感学报, 2023, 27(2):249-266. |
[ Zhang Y J, Wang F, Li Y S, et al. Remote sensing knowledge graph construction and its application in typical scenarios[J]. National Remote Sensing Bulletin, 2023, 27(2):249-266. ] DOI:10.11834/jrs.20210469
doi: 10.11834/jrs.20210469 |
|
[11] | 李彦胜, 张永军. 耦合知识图谱和深度学习的新一代遥感影像解译范式[J]. 武汉大学学报·信息科学版, 2022, 47(8):1176-1190. |
[ Li Y S, Zhang Y J. A new paradigm of remote sensing image interpretation by coupling knowledge graph and deep learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1176-1190. ] DOI:10.13203/j.whugis20210652
doi: 10.13203/j.whugis20210652 |
|
[12] |
周成虎, 孙九林, 苏奋振, 等. 地理信息科学发展与技术应用[J], 地理学报, 2020, 75(12):2593-2609.
doi: 10.11821/dlxb202012004 |
[ Zhou C H, Sun J L, Su F Z, et al. Geographic information science development and technological application[J]. Acta Geographica Sinica, 2020, 75(12):2593-2609. ] DOI:10.11821/dlxb202012004
doi: 10.11821/dlxb202012004 |
|
[13] |
Zhu Y Q, Zhu A X, Feng M, et al. A similarity-based automatic data recommendation approach for geographic models[J]. International Journal of Geographical Information Science, 2017, 31(7):1403-1424. DOI:DOI:10.1080/13658816.2017.1300805
doi: 10.1080/13658816.2017.1300805 |
[14] |
Zhu Y Q, Zhu A X, Song J, et al. Multidimensional and quantitative interlinking approach for linked geospatial data[J]. International Journal of Digital Earth, 2017, 10(9):923-943. DOI:10.1080/17538947.2016.1266041
doi: 10.1080/17538947.2016.1266041 |
[15] |
Zhu Y Q and Yang J. Automatic data matching for geospatial models: a new paradigm for geospatial data and models sharing[J]. Annals of GIS, 2019, 25(4):283-298. DOI: 10.1080/19475683.2019.1670735
doi: 10.1080/19475683.2019.1670735 |
[16] |
陈述彭, 岳天祥, 励惠国. 地学信息图谱研究及其应用[J]. 地理研究, 2000, 19(4):337-343.
doi: 10.11821/yj2000040002 |
[ Chen S P, Yue T X, Li H G. Studies on Geo-informatic Tupu and its application[J]. Geographical Research, 2000, 19(4):337-343. ] DOI: 10.11821/yj2000040002
doi: 10.11821/yj2000040002 |
|
[17] | 陈述彭. 地学信息图谱探索研究[M]. 北京: 商务印书馆, 2001. |
[ Chen S P. Research on Geo-information Tupu[M]. Beijing: The Commercial Press, 2001. ] | |
[18] | 陈述彭. 地学信息图谱的概念[M]// 陈述彭.地学的探索(第六卷):地球信息科学. 北京: 科学出版社, 2003:209-228. |
[ Chen S P. The concept of Geo-information Tupu[M]// Chen S P. Exploration of Geosciences (Volume VI):Earth Information Science. Beijing: Science Press, 2003:209-228. ] | |
[19] |
张洪岩, 周成虎, 闾国年, 等. 试论地学信息图谱思想的内涵与传承[J]. 地球信息科学学报, 2020, 22(4):653-661.
doi: 10.12082/dqxxkx.2020.200167 |
[ Zhang H Y, Zhou C H, Lv G N, et al. The connotation and inheritance of Geo-information Tupu[J]. Journal of Geo-information Science, 2020, 22(4):653-661. ] DOI:10.12082/dqxxkx.2020.200167
doi: 10.12082/dqxxkx.2020.200167 |
|
[20] | 张春菊, 张雪英, 王曙, 等. 中文文本的事件时空信息标注[J]. 中文信息学报, 2016, 30(3):213-222. |
[ Zhang C J, Zhang X Y, Wang S, et al. Annotation of spatial-temporal information of event in Chinese text[J]. Journal of Chinese Information Processing, 2016, 30(3):213-222. ] | |
[21] |
王姬卜, 陆锋, 吴升, 等. 基于自动回标的地理实体关系语料库构建方法[J]. 地球信息科学学报, 2018, 20(7):871-879.
doi: 10.12082/dqxxkx.2018.180032 |
[ Wang J B, Lu F, Wu S, et al. Constructing the corpus of geographical entity relations based on automatic annotation[J]. Journal of Geo-information Science, 2018, 20(7):871-879. ] DOI:10.12082/dqxxkx.2018.180032
doi: 10.12082/dqxxkx.2018.180032 |
|
[22] |
Gao S, Li L, Li W, et al. Constructing gazetteers from volunteered big geo-data based on Hadoop[J]. Computer, Environment and Urban Systems, 2017, 61:172-186.
doi: 10.1016/j.compenvurbsys.2014.02.004 |
[23] | Hu Y. Geo-text data and data-driven geospatial semantics[J]. Geography Compass, 2018, 12(11):e12404 |
[24] | Ju Y, Adams B, Janowicz K, et al. Things and strings: Improving place name disambiguation from short texts by combining entity co-occurrence with topic modeling[C]. European Knowledge Acquisition Workshop, Bologna, Italy, 2016. |
[25] |
Acheson E, Volpi M, Purves R S. Machine learning for cross-gazetteer matching of natural features[J]. International Journal of Geographical Information Science, 2020, 34(4):708-734.
doi: 10.1080/13658816.2019.1599123 |
[26] | 张雪英, 闾国年, 杜咪, 等. 大数据驱动的地名信息获取与应用[J]. 现代测绘, 2017, 40(2):1-5. |
[ Zhang X Y, Lv G N, Du M, et al. Acquisition and application on geographical names information based on large data driving[J]. Modern Surveying and Mapping, 2017, 40(2):1-5. ] | |
[27] |
Santos R, Murrieta-Flores P, Calado P, et al. Toponym matching through deep neural networks[J]. International Journal of Geographical Information Science, 2018, 32(2):324-348.
doi: 10.1080/13658816.2017.1390119 |
[28] |
Wang S, Zhang X Y, Ye P, et al. Deep belief networks based toponym recognition for Chinese text[J]. ISPRS International Journal of Geo-information, 2018, 7(6):217. DOI:10.3390/ijgi7060217
doi: 10.3390/ijgi7060217 |
[29] | 张春菊, 陈玉冰, 张雪英, 等. 基于交互式与迭代式学习的地名语料库智能构建方法[P]. 中国:ZL201911029961.4, 2023年1月18日. |
[ Zhang C J, Chen Y B, Zhang X Y, et al. An intelligent construction method for place name corpus based on interactive and iterative learning[P]. China:ZL201911029961.4, 2023-01-18. ] | |
[30] | Wang F, Li P F, Zhu Q M. A hybrid model of classification and generation for spatial relation extraction[C]. In Proceedings of the 29th International Conference on Computational Linguistics, 2022:1915-1924. |
[31] | Zhang L, Wang R Z, Zhou J B, et al. Joint intent detection and entity linking on spatial domain queries[C]. In Findings of the Association for Computational Linguistics: EMNLP 2020, 2020:4937-4947. |
[32] |
Yang T Y, Lan A S, Narasimhan K. Robust and interpretable grounding of spatial references with relation networks[R]. 2020, DOI:10.48550/arXiv.2005.00696
doi: 10.48550/arXiv.2005.00696 |
[33] |
Song C, Lin Y F, Guo S N, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[C]. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1):914-921. DOI:10.1609/aaai.v34i01.5438
doi: 10.1609/aaai.v34i01.5438 |
[34] |
Nichols E, Botros F. SpRL-CWW: Spatial relation classification with independent multi-class models[C]. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015:895-901. DOI:10.18653/v1/S15-2150
doi: 10.18653/v1/S15-2150 |
[35] |
D'Souza J, Ng V. Sieve-based spatial relation extraction with expanding parse trees[C]. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 758-768, Lisbon, Portugal. Association for Computational Linguistics. DOI:10.18653/v1/D15-1087
doi: 10.18653/v1/D15-1087 |
[36] |
Ramrakhiyani N, Palshikar G, Varma V. A simple neural approach to spatial role labelling[C]. In: Azzopardi L, Stein B, Fuhr N, et al. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science, vol 11438. Springer, Cham. DOI:10.1007/978-3-030-15719-7_13
doi: 10.1007/978-3-030-15719-7_13 |
[37] |
Shin H J, Park J Y, Yuk D B, et al. BERT-based spatial information extraction[C]. In Proceedings of the Third International Workshop on Spatial Language Understanding, 2020:10-17. DOI:10.18653/v1/2020.splu-1.2
doi: 10.18653/v1/2020.splu-1.2 |
[38] |
Qiu Q, Xie Z, Ma K, et al. Spatially oriented convolutional neural network for spatial relation extraction from natural language texts[J]. Transactions in GIS, 2022, 26(2):839-866. DOI:10.1111/tgis.12887
doi: 10.1111/tgis.12887 |
[39] |
Yu L, Qiu P Y, Gao J L, et al. A knowledge-based filtering method for open relations among geo-entities[J]. ISPRS International Journal of Geo-information, 2019, 8(2):59. DOI:10.3390/ijgi8020059
doi: 10.3390/ijgi8020059 |
[40] |
高嘉良, 余丽, 仇培元, 等. 基于通用知识库的地理实体开放关系过滤方法[J]. 地球信息科学学报, 2019, 21(9):1392-1401.
doi: 10.12082/dqxxkx.2019.190005 |
[ Gao J L, Yu L, Qiu P Y, et al. A knowledge-based method for filtering Geo-entity relations[J]. Journal of Geo-information Science, 2019, 21(9):1392-1401. ] DOI:10.12082/dqxxkx.2019.190005
doi: 10.12082/dqxxkx.2019.190005 |
|
[41] | 仇培元, 张恒才, 余丽, 等. 微博客蕴含交通事件信息抽取的自动标注方法[J]. 中文信息学报, 2017, 31(2):107-116. |
[ Qiu P Y, Zhang H C, Yu L, et al. An automatic labeling method for extracting traffic event information from microblog messages[J]. Journal of Chinese Information Processing, 2017, 31(2):107-116. ] | |
[42] |
黄宗财, 仇培元, 陆锋, 等. 基于联合主题特征的网络新闻文本蕴含环境污染事件检测[J]. 地球信息科学学报, 2019, 21(10):1510-1517.
doi: 10.12082/dqxxkx.2019.190037 |
[ Huang Z C, Chou PY, Lu F, et al. Detection of environmental pollution events in news corpora based on joint thematic features[J]. Journal of Geo-information Science, 2019, 21(10):1510-1517. ] DOI:10.12082/dqxxkx.2019.190037
doi: 10.12082/dqxxkx.2019.190037 |
|
[43] | 黄宗财, 仇培元, 王海波, 等. 结合事件和语境特征的台风事件信息抽取方法[J]. 测绘科学技术学报, 2019. 36(2):209-214. |
[ Huang Z C, Qiu P Y, Wang H B, et al. Typhoon event information extraction method based on event and context characteristics[J]. Journal of Geomatics Science and Technology, 2019, 36(2):209-214. ] DOI:10.3969/j.issn.1673-6338.2019.02.018
doi: 10.3969/j.issn.1673-6338.2019.02.018 |
|
[44] |
Ye P, Zhang X Y, Zhang C J, et al. Positioning localities for vague spatial location description: A supervaluation semantics approach[J]. ISPRS International Journal of Geo-information, 2022, 11(1):68. DOI:10.3390/ijgi11010068
doi: 10.3390/ijgi11010068 |
[45] |
Wang X N, Du S H, Feng C C, et al. Interpreting the fuzzy semantics of natural-language spatial relation terms with the fuzzy random forest algorithm[J]. ISPRS International Journal of Geo-information, 2018, 7(2):58. DOI:10.3390/ijgi7020058
doi: 10.3390/ijgi7020058 |
[46] | 王圣音, 刘瑜, 陈泽东, 等. 大众点评数据下的城市场所范围感知方法[J]. 测绘学报, 2018, 47(8):1105-1113. |
[ Wang S Y, Liu Y, Chen Z D, et al. Representing multiple urban places' footprints from Dianping.com Data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8):1105-1113. ] DOI:10.11947/j.AGCS.2018.20180110
doi: 10.11947/j.AGCS.2018.20180110 |
|
[47] |
Liu K, Qiu P Y, Gao S, et al. Investigating urban metro stations as cognitive places in cities using points of interest[J]. Cities, 2020, 97:102561. DOI:10.1016/j.cities.2019.102561
doi: 10.1016/j.cities.2019.102561 |
[48] |
Sun K, Zhu Y Q, Song J. Progress and challenges on entity alignment of geographic knowledge bases[J]. ISPRS International Journal of Geo-information, 2019, 8(2):77. DOI:10.3390/ijgi8020077
doi: 10.3390/ijgi8020077 |
[49] |
Sun K, Hu Y J, Song J, et al. Aligning geographic entities from historical maps for building knowledge graphs[J]. International Journal of Geographical Information Science, 2021, 35(10):2078-2107. DOI:10.1080/13658816.2020.1845702
doi: 10.1080/13658816.2020.1845702 |
[50] |
徐召华, 诸云强, 宋佳, 等. 基于词嵌入的地理知识库实体类别对齐方法研究[J]. 地球信息科学学报, 2021, 23(8):1372-1381.
doi: 10.12082/dqxxkx.2021.200566 |
[ Xu Z H, Zhu Y Q, Song J, et al. Word embedding-based method for entity category alignment of geographic knowledge base[J]. Journal of Geo-information Science, 2021, 23(8):1372-1381. ] DOI:10.12082/dqxxkx.2021.200566
doi: 10.12082/dqxxkx.2021.200566 |
|
[51] |
Yu L, Qiu P Y, Liu X L, et al. A holistic approach to aligning geospatial data with multidimensional similarity measuring[J]. International Journal of Digital Earth, 2018, 11(8):845-862. DOI:10.1080/17538947.2017.1359688
doi: 10.1080/17538947.2017.1359688 |
[52] |
Wang S, Zhang X Y, Ye P, et al. Geographic knowledge graph (GeoKG): A formalized geographic knowledge representation[J]. ISPRS International Journal of Geo-information, 2019, 8(4):184. DOI:10.3390/ijgi8040184
doi: 10.3390/ijgi8040184 |
[53] |
Zhang X Y, Huang Y, Zhang C J, et al. Geoscience Knowledge Graph (GeoKG): Development, construction and challenges[J]. Transactions in GIS, 2022, 26(6):1-15. DOI:10.1111/tgis.12985
doi: 10.1111/tgis.12985 |
[54] |
Qiu P Y, Gao J L, Yu L, et al. Knowledge embedding with geospatial distance restriction for geographic knowledge graph completion[J]. ISPRS International Journal of Geo-information, 2019, 8(6):254. DOI:10.3390/ijgi8060254
doi: 10.3390/ijgi8060254 |
[55] | 黄挚文. 台风灾害事件知识图谱构建方法研究[D]. 南京: 南京师范大学, 2021. |
[ Huang Z W. Research on the construction method of knowledge graph for the typhoon disaster events[D]. Nanjing: Nanjing Normal University, 2021. ] | |
[56] | 王晓爽, 李吉东, 徐海红, 等. 顾及时空特征的大气污染执法事理图谱构建方法研究[J]. 地理与地理信息科学, 2022, 38(3):1-8. |
[ Li J D, Xu H H, et al. Logic graph construction of air pollution law enforcement event considering the spatiotemporal features[J]. Geography and Geo-information Science, 2022, 38(3):1-8. ] DOI:10.3969/j.issn.1672-0504.2022.03.001
doi: 10.3969/j.issn.1672-0504.2022.03.001 |
|
[57] |
Wang X, Zhu Y Q, Zeng H Y, et al. Spatialized analysis of air pollution complaints in Beijing using the BERT + CRF model[J]. Atmosphere 2022, 13:1023. DOI:10.3390/atmos13071023
doi: 10.3390/atmos13071023 |
[58] | 朱庆, 王所智, 丁雨淋, 等. 铁路隧道钻爆法施工智能管理的安全质量进度知识图谱构建方法[J]. 武汉大学学报·信息科学版, 2022, 47(8):1155-1164. |
[ Zhu Q, Wang S Z, Ding Y L, et al. A method of safety-quality-schedule knowledge graph for intelligent management of drilling and blasting construction of railway tunnels[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1155-1164. ] DOI:10.13203/j.whugis20210573
doi: 10.13203/j.whugis20210573 |
|
[59] | 张永军, 程鑫, 李彦胜, 等. 利用知识图谱的国土资源数据管理与检索研究[J]. 武汉大学学报·信息科学版, 2022, 47(8):1165-1175. |
[ Zhang Y J, Cheng X, Li Y S, et al. Research on land and resources management and retrieval using knowledge graph[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1165-1175. ] DOI:10.13203/j.whugis20210714
doi: 10.13203/j.whugis20210714 |
|
[60] | 高嘉良, 陆锋, 彭澎, 等. 基于网络文本迁移学习的旅游知识图谱构建[J]. 武汉大学学报·信息科学版, 2022, 47(8),1191-1200,1219. |
[ Gao J L, Lu F, Peng P, et al. Construction of tourism attraction knowledge graph based on web text and transfer learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1191-1200,1219. ] DOI:10.13203/j.whugiS20220120
doi: 10.13203/j.whugiS20220120 |
|
[61] |
Qiu P Y, Gao J L, Lu F. Identifying the relatedness between tourism attractions from online reviews with heterogeneous information network embedding[J]. ISPRS International Journal of Geo-information, 2021, 10(12):797. DOI:10.3390/ijgi10120797
doi: 10.3390/ijgi10120797 |
[62] | 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学:信息科学, 2020, 50(7):937-956. |
[ Qin C, Zhu H S, Zhuang F Z, et al. A survey on knowledge graph-based recommender systems[J]. Sci Sin Inform, 2020, 50(7):937-956. ] DOI:10.1360/SSI-2019-0274
doi: 10.1360/SSI-2019-0274 |
|
[63] | 高嘉良, 仇培元, 余丽, 等. 基于旅游知识图谱的可解释景点推荐[J]. 中国科学:信息科学版, 2020, 50(7):1055-1068. |
[ Gao J L, Qiu P Y, Yu L, et al. An interpretable attraction recommendation method based on knowledge graph[J]. SCIENTIA SINICA Informationis, 2020, 50(7):1055-1068. ] DOI:10.1360/SSI-2019-0268
doi: 10.1360/SSI-2019-0268 |
|
[64] | 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10):2966-2994. |
[ Guan S P, Jin X L, Jia Y T, et al. Knowledge reasoning over knowledge graph: A survey[J]. Journal of Software, 2018, 29(10):2966-2994. ] DOI:10.13328/j.cnki.jos.005551
doi: 10.13328/j.cnki.jos.005551 |
|
[65] |
Zhou J, Ke P, Qiu X P, et al. ChatGPT: Potential, prospects, and limitations[J]. Frontiers of Information Technology & Electronic Engineering. 2023. DOI:10.1631/fitee.2300089
doi: 10.1631/fitee.2300089 |
[1] | 曹乔卓然, 王丝丝, 陈祖刚, 李国庆, 李静. 基于正则表达式的地学科学数据名称提取方法[J]. 地球信息科学学报, 2023, 25(8): 1601-1610. |
[2] | 张春菊, 刘文聪, 张雪英, 叶鹏, 汪陈, 朱少楠, 张达玉. 基于本体的金矿知识图谱构建方法[J]. 地球信息科学学报, 2023, 25(7): 1269-1281. |
[3] | 张彤, 刘仁宇, 王培晓, 高楚林, 刘杰, 王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景[J]. 地球信息科学学报, 2023, 25(7): 1297-1311. |
[4] | 黄宗财, 陆锋, 仇培元, 彭澎. 网络文本蕴含地理信息质量评估框架[J]. 地球信息科学学报, 2023, 25(6): 1121-1134. |
[5] | 罗秋雨, 乐阳, 谷岩岩. 城市地铁出行知识图谱嵌入表达的超参数选择[J]. 地球信息科学学报, 2023, 25(6): 1164-1175. |
[6] | 唐曾杨, 艾廷华, 徐海江. 地理知识图谱下的建筑群空间分布模式推理[J]. 地球信息科学学报, 2023, 25(6): 1202-1214. |
[7] | 王益鹏, 张雪英, 党玉龙, 叶鹏. 顾及时空过程的台风灾害事件知识图谱表示方法[J]. 地球信息科学学报, 2023, 25(6): 1228-1239. |
[8] | 杨玉莹, 赵学胜, 刘会园, 彭舒, 吕源鑫. 基于地表覆盖数据的湿地知识图谱构建[J]. 地球信息科学学报, 2023, 25(6): 1240-1251. |
[9] | 刘建湘, 陈晓慧, 刘海砚, 张兵, 徐立, 刘涛, 付雨萌. 基于轨迹语义的船舶活动知识图谱构建[J]. 地球信息科学学报, 2023, 25(6): 1252-1266. |
[10] | 蒋秉川, 黄梓航, 任琰, 孙勇, 范爱民. 基于时序超图模型的战场环境多层次知识建模方法[J]. 地球信息科学学报, 2023, 25(6): 1148-1163. |
[11] | 陈晖萱, 郭旦怀, 葛世寅, 王婧, 王彦棡, 陈峰, 杨微石. M2T多源知识图谱融合的空间场景描述文本自动生成框架[J]. 地球信息科学学报, 2023, 25(6): 1176-1185. |
[12] | 诸云强, 孙凯, 胡修棉, 闾海荣, 王新兵, 杨杰, 王曙, 李威蓉, 宋佳, 苏娜, 牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践[J]. 地球信息科学学报, 2023, 25(6): 1215-1227. |
[13] | 刘宇, 李勇. 面向城市可持续发展的城市商圈/街区知识图谱构建方法与应用展望[J]. 地球信息科学学报, 2023, 25(12): 2374-2386. |
[14] | 吴琼, 李志刚, 吴闽. 城市口袋公园研究现状与发展趋势[J]. 地球信息科学学报, 2023, 25(12): 2439-3455. |
[15] | 陈晓玲, 唐丽玉, 胡颖, 江锋, 彭巍, 冯先超. 基于ALBERT模型的园林植物知识实体与关系抽取方法[J]. 地球信息科学学报, 2021, 23(7): 1208-1220. |
|