地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (10): 2039-2054.doi: 10.12082/dqxxkx.2023.230212
李云帆1,2(), 李彩霞1,2, 贾翔1,2, 吴晶1,2, 张晓丽1,2,*(
), 梅晓丽3, 朱若柠3, 王冬3
收稿日期:
2023-04-21
修回日期:
2023-07-13
出版日期:
2023-10-25
发布日期:
2023-09-22
通讯作者:
* 张晓丽(1967—),北京人,博士,教授,博士生导师,研究方向为资源环境遥感。E-mail: zhangxl@bjfu.edu.cn作者简介:
李云帆(1999—),山西长治人,硕士生,研究方向为资源环境遥感。E-mail: lilichin@bjfu.edu.cn
基金资助:
LI Yunfan1,2(), LI Caixia1,2, JIA Xiang1,2, WU Jing1,2, ZHANG Xiaoli1,2,*(
), MEI Xiaoli3, ZHU Ruoning3, WANG Dong3
Received:
2023-04-21
Revised:
2023-07-13
Online:
2023-10-25
Published:
2023-09-22
Contact:
* ZHANG Xiaoli, E-mail: Supported by:
摘要:
面对“碎片化”生态治理的挑战,全面了解流域生态系统的脆弱性及其演变规律成为生态环境综合治理的关键。乌梁素海流域作为全国示范意义的生态保护修复工程试点,经历了传统“治理湖泊”到系统“治理流域”的转变。本研究选择乌梁素海流域作为研究对象,构建了“敏感-恢复-压力”生态脆弱性评价指标体系,并以Google Earth Engine (GEE)云平台为基础,采用Mann-Kendall突变检验、Sen+Mann-Kendall趋势分析和变换轨迹等方法,对2000—2020年乌梁素海流域生态脆弱性时空演变进行分析,最后通过地理探测器进一步探讨了乌梁素海流域生态脆弱性的成因,并揭示了其主要驱动因子。研究结果表明:乌梁素海流域的生态脆弱性表现为“中间低、两边高”的格局。其中,西部乌兰布和沙漠以及东部乌拉山区生态脆弱性较高,而中部河套灌区则相对较低。2000—2020年,流域的生态脆弱性分级指数从2.44上升至2.59,揭示了生态脆弱性的轻微恶化趋势。2000、2009、2013、2017和2020年为突变节点,约59.82%的区域在评估期间生态脆弱性等级保持稳定,变化轨迹法显示2013年为显著下降的节点,2017年后下降趋势减缓。此外,地表干度是乌梁素海流域生态脆弱性的核心驱动因子,多个因素相互作用时对生态脆弱性的解释力超过单一因素。土地覆盖类型解释力最为显著,其次是气象类型、经济类型。本研究对长时序流域生态脆弱性的时空变化及成因进行了分析,为同类型的生态脆弱区域评估和生态保护与修复工程治理提供科学依据。
李云帆, 李彩霞, 贾翔, 吴晶, 张晓丽, 梅晓丽, 朱若柠, 王冬. 乌梁素海流域生态脆弱性时空变化及其成因分析[J]. 地球信息科学学报, 2023, 25(10): 2039-2054.DOI:10.12082/dqxxkx.2023.230212
LI Yunfan, LI Caixia, JIA Xiang, WU Jing, ZHANG Xiaoli, MEI Xiaoli, ZHU Ruoning, WANG Dong. Spatiotemporal Changes and Causes of Ecological Vulnerability in Ulansuhai Basin[J]. Journal of Geo-information Science, 2023, 25(10): 2039-2054.DOI:10.12082/dqxxkx.2023.230212
表1
乌梁素海流域生态脆弱性评价体系和数据来源
要素层 | 指标层 | 指标性质 | 空间分辨率 | 原始数据来源 |
---|---|---|---|---|
生态敏感性 (Sensitivity) | 高程 | 正向 | 90 m | SRTM[ |
地形起伏度 | 正向 | 90 m | SRTM | |
景观干扰度 | 正向 | 1 km | Zendo[ | |
年均降雨量 | 正向 | 1 km | 中国科学院环境数据中心 | |
大气温度 | 正向 | 1 km | Zendo[ | |
地表温度 | 正向 | 1 km | MODIS | |
地表湿度 | 负向 | 30 m | Landsat | |
地表干度 | 正向 | 30 m | Landsat | |
生态压力度 (Pressure) | 人口密度 | 正向 | 1 km | GPW v4[ |
生态恢复力 (Recovery) | 植被覆盖度 | 负向 | 30 m | Landsat |
经济密度 | 负向 | 1 km | 中国科学院环境数据中心[ |
表3
乌梁素海流域生态脆弱性分级划分标准
脆弱性等级 | 生态脆弱性指数范围 | 脆弱程度 | 生态特征解释 |
---|---|---|---|
Ⅰ | 0≤ EVI<0.2 | 潜在脆弱 | 生态功能完整,对各类干扰敏感性弱,承受生态压力小,自我恢复能力强,无生态异常出现 |
Ⅱ | 0.2≤ EVI<0.4 | 微度脆弱 | 生态功能较为完整,对各类干扰敏感性较弱,承受生态压力较小,自我恢复能力强,存在潜在的生态异常 |
Ⅲ | 0.4≤ EVI<0.6 | 轻度脆弱 | 生态功能尚可维持,对各类干扰敏感性中等,承受生态压力接近阈值,自我恢复能力较弱,存在少量的生态异常 |
Ⅳ | 0.6≤ EVI<0.8 | 中度脆弱 | 生态功能部分退化,对各类干扰敏感性较强,承受生态压力较大,受损后恢复难度较大,生态异常较多 |
Ⅴ | 0.8≤ EVI ≤1 | 重度脆弱 | 生态功能退化严重,对各类干扰敏感性强,承受生态压力大,受损恢复难度大,生态异常集中连片出现 |
[1] | 张学玲, 余文波, 蔡海生, 等. 区域生态环境脆弱性评价方法研究综述[J]. 生态学报, 2018, 38(16):5970-5981. |
[Zhang X L, Yu W B, Cai H S, et al. Review of the evaluation methods of regional eco-environmental vulnerability[J]. Acta Ecologica Sinica, 2018, 38(16):5970-5981.] DOI:10.5846/stxb201708211502 | |
[2] | 王让会, 樊自立. 塔里木河流域生态脆弱性评价研究[J]. 干旱环境监测, 1998, 12(4):218-221,223. |
[Wang R H, Fan Z L. Study on ecological vulnerability assessment in Tarim River Basin[J]. Arid Environmental Monitoring, 1998, 12(4):218-221,223.] DOI:10.1007/s11769-001-0025-1 | |
[3] | 廖炜, 李璐, 吴宜进, 等. 丹江口库区土地利用变化与生态环境脆弱性评价[J]. 自然资源学报, 2011, 26(11):1879-1889. |
[Liao W, Li L, Wu Y J, et al. Land use change and eco-environmental vulnerability evaluation in the Danjiangkou Reservoir area[J]. Journal of Natural Resources, 2011, 26(11):1879-1889.] DOI:10.11849/zrzyxb.2011.11.007 | |
[4] | 吴琼. 基于景观格局的辽宁海岸带生态脆弱性评价[D]. 大连: 辽宁师范大学, 2014. |
[Wu Q. Assessment of ecological vulnerability of Liaoning coastal zone on landscape pattern[D]. Dalian: Liaoning Normal University, 2014.] DOI:10.7666/d.Y2613064 | |
[5] | 姚建, 艾南山, 丁晶. 中国生态环境脆弱性及其评价研究进展[J]. 兰州大学学报, 2003, 39(3):77-80. |
[Yao J, Ai N S, Ding J. Progress in the studies of eco-environmental fragility and assessment in China[J]. Journal of Lanzhou University, 2003, 39(3):77-80.] DOI:10.13885/j.issn.0455-2059.2003.03.021 | |
[6] | 徐广才, 康慕谊, 贺丽娜, 等. 生态脆弱性及其研究进展[J]. 生态学报, 2009, 29(5):2578-2588. |
[Xu G C, Kang M Y, He L N, et al. Advances in research on ecological vulnerability[J]. Acta Ecologica Sinica, 2009, 29(5):2578-2588.] DOI:10.3321/j.issn:1000-0933.2009.05.047 | |
[7] | 田海宁. 汉中市生态脆弱性评价及空间分布规律研究[J]. 中国农业资源与区划, 2017, 38(3):148-152. |
[Tian H N. The ecological vulnerability assessment and spatial distribution of Hanzhong city[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(3):148-152.] DOI:10.7621/cjarrp.1005-9121.20170323 | |
[8] | Furlan A, Bonotto D M, Gumiere S J. Development of environmental and natural vulnerability maps for Brazilian coastal at São Sebastião in São Paulo State[J]. Environmental Earth Sciences, 2011, 64(3):659-669. DOI:10.1007/s12665-010-0886-7 |
[9] | 于伯华, 吕昌河. 青藏高原高寒区生态脆弱性评价[J]. 地理研究, 2011, 30(12):2289-2295. |
[Yu B H, (Lü/lv/lu/lyu) C H. Assessment of ecological vulnerability on the Tibetan Plateau[J]. Geographical Research, 2011, 30(12):2289-2295.] DOI:10.11821/yj2011120016 | |
[10] | 吴春生, 黄翀, 刘高焕, 等. 基于模糊层次分析法的黄河三角洲生态脆弱性评价[J]. 生态学报, 2018, 38(13):4584-4595. |
[Wu C S, Huang C, Liu G H, et al. Assessment of ecological vulnerability in the Yellow River Delta using the Fuzzy Analytic Hierarchy Process[J]. Acta Ecologica Sinica, 2018, 38(13):4584-4595.] DOI:10.5846/stxb201706071037 | |
[11] | Zou T H, Chang Y X, Chen P, et al. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018[J]. Ecological Indicators, 2021, 133:108429. DOI:10.1016/j.ecolind.2021.108429 |
[12] | Acosta-Michlik L, Espaldon V. Assessing vulnerability of selected farming communities in the Philippines based on a behavioural model of agent’s adaptation to global environmental change[J]. Global Environmental Change, 2008, 18(4):554-563. DOI:10.1016/j.gloenvcha.2008.08.006 |
[13] |
温晓金, 杨新军, 王子侨. 多适应目标下的山地城市社会—生态系统脆弱性评价[J]. 地理研究, 2016, 35(2):299-312.
doi: 10.11821/dlyj201602008 |
[Wen X J, Yang X J, Wang Z Q. Assessment on the vulnerability of social-ecological systems in a mountainous city depending on multi-targets adaption[J]. Geographical Research, 2016, 35(2):299-312.] DOI:10.11821/dlyj201602008 | |
[14] | Polsky C, Neff R, Yarnal B. Building comparable global change vulnerability assessments: The vulnerability scoping diagram[J]. Global Environmental Change, 2007, 17(3/4):472-485. DOI:10.1016/j.gloenvcha.2007.01.005 |
[15] |
李永化, 范强, 王雪, 等. 基于SRP模型的自然灾害多发区生态脆弱性时空分异研究——以辽宁省朝阳县为例[J]. 地理科学, 2015, 35(11):1452-1459.
doi: 10.13249/j.cnki.sgs.2015.011.1452 |
[Li Y H, Fan Q, Wang X, et al. Spatial and temporal differentiation of ecological vulnerability under the frequency of natural hazard based on SRP model: A case study in Chaoyang County[J]. Scientia Geographica Sinica, 2015, 35(11):1452-1459.] DOI:10.13249/j.cnki.sgs.2015.11.014 | |
[16] | 张泽, 胡宝清, 丘海红, 等. 基于山江海视角与SRP模型的桂西南-北部湾生态环境脆弱性评价[J]. 地球与环境, 2021, 49(3):297-306. |
[Zhang Z, Hu B Q, Qiu H H, et al. Ecological environment vulnerability assessment of southwest guangxi-beibu gulf based on the perspective of mountains, rivers and sea and SRP model[J]. Earth and Environment, 2021, 49(3):297-306.] DOI:10.14050/j.cnki.1672-9250.2021.49.064 | |
[17] |
王铁军, 赵礼剑, 张溪. 青藏高原生态屏障区生态环境综合评价方法探讨[J]. 测绘通报, 2018(9):112-116.
doi: 10.13474/j.cnki.11-2246.2018.0291 |
[Wang T J, Zhao L J, Zhang X. Discussion on the method of ecotope comprehensive evaluation for Tibet Plateau ecological shelter zone[J]. Bulletin of Surveying and Mapping, 2018(9):112-116.] DOI:10.13474/j.cnki.11-2246.2018.0291 | |
[18] | Cao C X, Yang B, Xu M, et al. Evaluation and analysis of post-seismic restoration of ecological security in Wenchuan using remote sensing and GIS[J]. Geomatics, Natural Hazards and Risk, 2016, 7(6):1919-1936. DOI:10.1080/19475705.2015.1084952 |
[19] | 刘晶晶. 集中连片特困区生态环境脆弱性评价研究——以大别山片区为例[D]. 武汉: 华中师范大学, 2019. |
[Liu J J. Study on evaluation of eco-environmental vulnerability in contiguous special poverty-stricken areas in the case of Ta-pieh Mountains area[D]. Wuhan: Central China Normal University, 2019.] DOI:10.27159/d.cnki.ghzsu.2019.000103 | |
[20] | 徐静, 王泽宇. 中国陆海统筹绩效时空分异及影响因素——基于脆弱性视角的分析[J]. 地域研究与开发, 2019, 38(2):25-30. |
[Xu J, Wang Z Y. Spatial and temporal differentiation of China’s land-sea coordination performance and influencing factors: Based on vulnerability perspective[J]. Areal Research and Development, 2019, 38(2):25-30.] DOI:10.3969/j.issn.1003-2363.2019.02.005 | |
[21] | 沈文娟, 李明诗. 基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析[J]. 生态学报, 2017, 37(5):1438-1449. |
[Shen W J, Li M S. Mapping disturbance and recovery of plantation forests in Southern China using yearly Landsat time series observations[J]. Acta Ecologica Sinica, 2017, 37(5):1438-1449.] DOI:10.5846/stxb201510142074 | |
[22] | Duo A, Zhao W J, Qu X Y, et al. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 53:103-117. DOI:10.1016/j.jag.2016.08.008 |
[23] | 朱鹏航, 于瑞宏, 葛铮, 等. 乌梁素海长时序水质变化及其驱动因子[J]. 生态学杂志, 2022, 41(3):546-553. |
[Zhu P H, Yu R H, Ge Z, et al. Long-term changes of water quality and the driving factors of Wuliangsuhai Lake[J]. Chinese Journal of Ecology, 2022, 41(3):546-553.] DOI: 10.13292/j.1000-4890.202202.022 | |
[24] | 田野, 冯启源, 唐明方, 等. 基于生态系统评价的山水林田湖草生态保护与修复体系构建研究——以乌梁素海流域为例[J]. 生态学报, 2019, 39(23):8826-8836. |
[Tian Y, Feng Q Y, Tang M F, et al. Ecological protection and restoration of forest, wetland, grassland and cropland based on the perspective of ecosystem assessment: A case study in Wuliangsuhai Watershed[J]. Acta Ecologica Sinica, 2019, 39(23):8826-8836.] DOI:10.5846/stxb201911222531 | |
[25] | Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127. DOI:10.1080/13658810802443457 |
[26] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010 |
[Wang J F, Xu C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.] DOI:10.11821/dlxb201701010 | |
[27] | Wang L, Diao C Y, Xian G, et al. A summary of the special issue on remote sensing of land change science with Google earth engine[J]. Remote Sensing of Environment, 2020, 248:112002. DOI:10.1016/j.rse.2020.112002 |
[28] | Gorelick N, Hancher M, Dixon M, et al. Google earth engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27. DOI: 10.1016/j.rse.2017.06.031 |
[29] | 鲁飞飞, 张勇, 李雪, 等. 乌梁素海流域湿地保护与恢复建设的探讨[J]. 林业资源管理, 2019(5):23-27,67. |
[Lu F F, Zhang Y, Li X, et al. Discussion on wetland protection and restoration along Wuliangsuhai Basin[J]. Forest Resources Management, 2019(5):23-27,67.] DOI:10.13466/j.cnki.lyzygl.2019.05.005 | |
[30] | 柳新伟, 周厚诚, 李萍, 等. 生态系统稳定性定义剖析[J]. 生态学报, 2004, 24(11):2635-2640. |
[Liu X W, Zhou H C, Li P, et al. A conceptual analysis of ecosystem stability[J]. Acta Ecologica Sinica, 2004, 24(11):2635-2640.] DOI: 10.3321/j.issn:1000-0933.2004.11.042 | |
[31] | 乔青, 高吉喜, 王维, 等. 生态脆弱性综合评价方法与应用[J]. 环境科学研究, 2008, 21(5):117-123. |
[Qiao Q, Gao J X, Wang W, et al. Method and application of ecological frangibility assessment[J]. Research of Environmental Sciences, 2008, 21(5):117-123.] DOI:10.13198/j.res.2008.05.119.qiaoq.021 | |
[32] | Jarvis A, Reuter H I, Nelson A, et al. Hole-filled SRTM for the globe Version 4[J]. available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org ), 2008, 15(25-54):5 |
[33] | Yang J E, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925. DOI:10.5 194/essd-13-3907-2021 |
[34] | He Q A, Wang M, Liu K, et al. GPRChinaTemp1km: A high-resolution monthly air temperature data set for China (1951-2020) based on machine learning[J]. Earth System Science Data, 2022, 14(7):3273-3292. DOI:10.5194/essd-14-3273-2022 |
[35] | Doxsey-Whitfield E, Macmanus K, Adamo S B, et al. Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4[J]. Papers in Applied Geography, 2015, 1(3): 226-234. DOI:10.1080/23754931.2015.1014272 |
[36] | Xu X. China GDP spatial distribution kilometer grid data set[J]. Data Registration and publishing System of Resources and Environmental Sciences Data Center, Chinese Academy of Sciences, 2017, 10:2017121102. DOI: 10.12078/2017121102 |
[37] | 张伟, 李爱农. 基于DEM的中国地形起伏度适宜计算尺度研究[J]. 地理与地理信息科学, 2012, 28(4):8-12. |
[Zhang W, Li A N. Study on the optimal scale for calculating the relief amplitude in China based on DEM[J]. Geography and Geo-Information Science, 2012, 28(4):8-12.] DOI:CNKI:SUN:DLGT.0.2012-04-003 | |
[38] | 崔杨林, 高祥, 董斌, 等. 县域景观生态风险评价[J]. 浙江农林大学学报, 2021, 38(3):541-551. |
[Cui Y L, Gao X, Dong B, et al. Landscape ecological risk assessment of county[J]. Journal of Zhejiang A&F University, 2021, 38(3):541-551.] DOI:10.11833/j.issn.2095-0756.20200461 | |
[39] | 谢花林. 基于景观结构的土地利用生态风险空间特征分析——以江西兴国县为例[J]. 中国环境科学, 2011, 31(4):688-695. |
[Xie H L. Spatial characteristic analysis of land use eco-risk based on landscape structure: A case study in the Xingguo County, Jiangxi Province[J]. China Environmental Science, 2011, 31(4):688-695.] DOI:CNKI:SUN:ZGHJ.0.2011-04-033 | |
[40] | 荆玉平, 张树文, 李颖. 基于景观结构的城乡交错带生态风险分析[J]. 生态学杂志, 2008, 27(2):229-234. |
[Jing Y P, Zhang S W, Li Y. Ecological risk analysis of rural-urban ecotone based on landscape structure[J]. Chinese Journal of Ecology, 2008, 27(2):229-234.] DOI:CNKI:SUN:STXZ.0.2008-02-017 | |
[41] | 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862. |
[Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.] DOI:10.5846/stxb201208301223 | |
[42] | Ali Baig M H, Zhang L F, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5):423-431. DOI:10.1080/2150704x.2014.915434 |
[43] | Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008, 29(14):4269-4276. DOI:10.1080/01431160802039957 |
[44] | 巴彦淖尔市地方志编纂委员会. 巴彦淖尔年鉴-2020[M]. 北京: 九州出版社, 2020. |
[Bayannaoer Local Chronicles Compilation Committee. Bayannaoer Yearbook[M]. Beijing: Kyushu Press, 2020.] DOI:10.38624/y.cnki.ybyze.2021.000001 | |
[45] |
王钰, 胡宝清. 西江流域生态脆弱性时空分异及其驱动机制研究[J]. 地球信息科学学报, 2018, 20(7):947-956.
doi: 10.12082/dqxxkx.2018.170633 |
[Wang Y, Hu B Q. Spatial and temporal differentiation of ecological vulnerability of Xijiang River in Guangxi and its driving mechanism[J]. Journal of Geo-information Science, 2018, 20(7):947-956.] DOI:10.12082/dqxxkx.2018.170633 | |
[46] | Liu Z Z, Wang H, Li N, et al. Spatial and temporal characteristics and driving forces of vegetation changes in the Huaihe River Basin from 2003 to 2018[J]. Sustainability, 2020, 12(6):2198. DOI:10.3390/su12062198 |
[47] | 徐涵秋, 邓文慧. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用, 2022, 37(1):1-7. |
[Xu H Q, Deng W H. Rationality analysis of MRSEI and its difference with RSEI[J]. Remote Sensing Technology and Application, 2022, 37(1):1-7.] DOI:10.11873/j.issn.1004-0323.2022.1.0001 | |
[48] | Mann H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3):245. DOI:10.2307/1907187 |
[49] | 蔡博峰, 于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009, 13(6):1170-1186. |
[Cai B F, Yu R. Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing, 2009, 13(6):1170-1186.] DOI:10.3321/j.issn:1007-4619.2009.06.014 | |
[50] | Wang D C, Gong J H, Chen L D, et al. Spatio-temporal pattern analysis of land use/cover change trajectories in Xihe watershed[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 14(1):12-21. DOI:10.1016/j.jag.2011.08.007 |
[51] | 张保龙, 于亮亮, 赵宇新, 等. 乌梁素海流域近60年气候变化特征研究[J]. 宁夏工程技术, 2021, 20(4):289-294,303. |
[Zhang B L, Yu L L, Zhao Y X, et al. Analysis of climate change characteristics in wuliangsu lake basin in recent 60 years[J]. Ningxia Engineering Technology, 2021, 20(4):289-294,303.] DOI:10.3969/j.issn.1671-7244.2021.04.002 | |
[52] | 迟文峰, 匡文慧, 党晓宏, 等. 基于遥感的内蒙古地级市土地覆盖结构时空变化特征分析[J]. 遥感技术与应用, 2019, 34(1):33-45. |
[Chi W F, Kuang W H, Dang X H, et al. Spatio-temporal characteristics of urban land cover structures in prefecture-level cities of inner Mongolia autonomous region based on remote sensing imagery[J]. Remote Sensing Technology and Application, 2019, 34(1):33-45.] DOI:10.11873/j.issn.1004-0323.2019.1.0033 | |
[53] | 王新民, 温挨树, 王海军, 等. 自然与人工创造的奇迹乌梁素海流域生态治理启示录[J]. 人与生物圈, 2021(1):49-53. |
[Wang X M, Wen A S, Wang H J, et al. Miracle created by nature and man-made: Revelation of ecological management in Wuliangsuhai Basin[J]. Man and the Biosphere, 2021(1):49-53.] DOI:10.3969/j.issn.1009-1661.2021.01.015 | |
[54] | 霍亮. 黄河流域乌梁素海生态修复与保护的实践[C]. 2021第九届中国水生态大会论文集.西安, 2021:221-224. |
[Huo T X, Huo L. Practice of ecological restoration and protection in Wuliangsuhai of Yellow River Basin[C]. Xi'an, Shaanxi, China, 2021:221-224.] DOI:10.26914/c.cnkihy.2021.024688 | |
[55] | Beroya-Eitner M A. Ecological vulnerability indicators[J]. Ecological Indicators, 2016, 60:329-334. DOI:10.1016/j.ecolind.2015.07.001 |
[56] |
Turner B L 2nd, Kasperson R E, Matson P A, et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14):8074-8079. DOI:10.1073/pnas.1231335100
pmid: 12792023 |
[57] | 林妍敏, 南雄雄, 胡志瑞, 等. 西北典型生态脆弱区植被覆盖度时空变化及其生态安全评价:以宁夏贺兰山为例[J]. 生态与农村环境学报, 2022, 38(5):599-608. |
[Lin Y M, Nan X X, Hu Z R, et al. Fractional vegetation cover change and its evaluation of ecological security in the typical vulnerable ecological region of northwest China: Helan Mountains in Ningxia[J]. Journal of Ecology and Rural Environment, 2022, 38(5):599-608.] DOI:10.19741/j.issn.1673-4831.2021.0461 | |
[58] |
张泽, 胡宝清, 丘海红, 等. 桂西南喀斯特-北部湾海岸带生态环境脆弱性时空分异与驱动机制研究[J]. 地球信息科学学报, 2021, 23(3):456-466.
doi: 10.12082/dqxxkx.2021.200278 |
[Zhang Z, Hu B Q, Qiu H H, et al. Spatio-temporal differentiation and driving mechanism of ecological environment vulnerability in southwest Guangxi Karst-beibu Gulf coastal zone[J]. Journal of Geo-information Science, 2021, 23(3):456-466.] DOI: 10.12082/dqxxkx.2021.200278 | |
[59] | Li B, Tao S, Dawson R W. Relations between AVHRR NDVI and ecoclimatic parameters in China[J]. International Journal of Remote Sensing, 2002, 23(5):989-999. DOI:10.1080/014311602753474192 |
[60] | Wu T S, Feng F, Lin Q A, et al. A spatio-temporal prediction of NDVI based on precipitation: An application for grazing management in the arid and semi-arid grasslands[J]. International Journal of Remote Sensing, 2020, 41(6):2359-2373. DOI:10.1080/01431161.2019.1688418. |
[61] | Chen L D, Wei W, Fu B J, et al. Soil and water conservation on the Loess Plateau in China: Review and perspective[J]. Progress in Physical Geography: Earth and Environment, 2007, 31(4):389-403. DOI:10.1177/0309133307081290 |
[62] | Zhang Y H, Ye A Z. Spatial and temporal variations in vegetation coverage observed using AVHRR GIMMS and Terra MODIS data in the mainland of China[J]. International Journal of Remote Sensing, 2020, 41(11):4238-4268. DOI:10.1080/01431161.2020.1714781 |
[63] | El-Zein A, Tonmoy F N. Assessment of vulnerability to climate change using a multi-criteria outranking approach with application to heat stress in Sydney[J]. Ecological Indicators, 2015, 48:207-217. DOI:10.1016/j.ecolind.2014.08.012 |
[64] | 汪东川, 陈星, 孙志超, 等. 格尔木长时间序列遥感生态指数变化监测[J]. 生态学报, 2022, 42(14):5922-5933. |
[Wang D C, Chen X, Sun Z C, et al. Monitoring of changes in the ecological index of long-time sequence Remote Sensing in Golmud, Qinghai Province[J]. Acta Ecologica Sinica, 2022, 42(14):5922-5933.] DOI:10.5846/stxb202104261102 |
[1] | 范兰馨, 吴艳红, 迟皓婧, 郑思齐, 闫家恒, 任永康, 孙忠华. 暖湿化下西北地区水体变化趋势遥感监测[J]. 地球信息科学学报, 2023, 25(9): 1842-1854. |
[2] | 潘佳乐, 信睿. COVID-19疫情前后北美五大湖航运网络多尺度时空变化及影响因素研究[J]. 地球信息科学学报, 2023, 25(7): 1481-1499. |
[3] | 尹文萍, 张鑫, 谢菲, 樊辉, 陈飞. 野象北移事件舆情演化及其影响机制[J]. 地球信息科学学报, 2023, 25(4): 794-808. |
[4] | 谭德明, 饶佳艺. 深圳市都市型滨水空间活力影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 809-822. |
[5] | 王林林, 范晓梅. 基于BFAST算法和多源数据的黄河三角洲耕地退化演变及驱动因素分析[J]. 地球信息科学学报, 2023, 25(11): 2218-2231. |
[6] | 甘聪聪, 邱炳文, 张建阳, 姚铖鑫, 叶智燕, 黄姮, 黄莹泽, 彭玉凤, 林艺真, 林多多, 苏中豪. 基于Sentinel-1/2动态耦合移栽期特征的水稻种植模式识别[J]. 地球信息科学学报, 2023, 25(1): 153-162. |
[7] | 张轲, 魏伟, 周婕, 尹力, 夏俊楠. 三江源地区“三区空间”时空演化及驱动机制分析(1992―2020年)[J]. 地球信息科学学报, 2022, 24(9): 1755-1770. |
[8] | 张颖, 汪侠, 闫艺涵, 史舒悦, 海少琪. 基于夜间灯光数据的西南地区县域旅游多维减贫效应时空变化研究[J]. 地球信息科学学报, 2022, 24(8): 1541-1557. |
[9] | 侯玥, 徐成东, 刘伟, 殷倩. 气候变化情景下淮河上游流域氮排放预测研究[J]. 地球信息科学学报, 2022, 24(8): 1558-1574. |
[10] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[11] | 王晓蕾, 石守海. 基于GEE的黄河流域植被时空变化及其地形效应研究[J]. 地球信息科学学报, 2022, 24(6): 1087-1098. |
[12] | 耿佳辰, 沈石, 程昌秀. “十三五”时期黄河流域PM2.5时空分布规律及多尺度社会经济影响机制分析[J]. 地球信息科学学报, 2022, 24(6): 1163-1175. |
[13] | 姚锦一, 王卷乐, 严欣荣, 魏海硕, Altansukh Ochir, Davaadorj Davaasuren. 基于深度神经网络的蒙古国色楞格河流域水体信息提取[J]. 地球信息科学学报, 2022, 24(5): 1009-1017. |
[14] | 张永凯, 杨春月, 张晚军, 毕潇梅. 黄河流域人口预期寿命的时空演化及影响因素分析[J]. 地球信息科学学报, 2022, 24(5): 902-913. |
[15] | 陈点点, 陈芸芝, 冯险峰, 武爽. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 2022, 24(4): 780-791. |
|