地球信息科学学报 ›› 2023, Vol. 25 ›› Issue (10): 2055-2069.doi: 10.12082/dqxxkx.2023.230253
收稿日期:
2023-05-08
修回日期:
2023-07-08
出版日期:
2023-10-25
发布日期:
2023-09-22
通讯作者:
* 高悦尔(1983—),女,福建晋江人,教授,研究方向为城市交通规划与土地利用、智慧交通与大数据、城市综合公共交通、轨道城市与TOD。E-mail: gaoyueer123@gmail.com作者简介:
闫丛笑(1998—),女,河北邯郸人,硕士生,研究方向为城市设计理论、轨道城市与TOD。E-mail: 573347381@qq.com
基金资助:
YAN Congxiao1(), GAO Yueer1,*(
), WANG Qiang2, CHEN Ye1
Received:
2023-05-08
Revised:
2023-07-08
Online:
2023-10-25
Published:
2023-09-22
Contact:
* GAO Yueer, E-mail: Supported by:
摘要:
精细化研究轨道站点辐射范围空间形态及其影响因素对于建立轨道交通与建成环境长效互动机制,指导基于TOD发展模式的轨道站点周边用地开发等具有重要意义。为了更精准地表达站点辐射范围的形态规律,本文以厦门为例,通过高德通勤OD数据和高德路径规划数据获得轨道各站点的实际客流来源空间分布,借助标准差椭圆法建立了扁率、相对距离、夹角、沿线偏移程度4个描述站点辐射范围形态的指标体系。基于指标体系归纳轨道站点辐射范围的空间形态类型,并揭示各种形态类别下的站点与周边建成环境及站点属性等因素的影响关系。结果显示:厦门市岛内站点辐射范围偏心程度更小且方向更加显著,多数站点与线路趋于垂直关系且趋于向线路垂直一侧偏移。站点可根据偏心程度的不同分为耦合服务类、偏心服务类和完全离心类站点,并进一步分为8种形态,其空间分布存在一定聚集现象。用地布局及开发程度、站点间距及布局、区位环境等影响因素,会使站点形成不同的辐射范围形态。结果对于补充轨道站点辐射范围的研究方法和提高轨道交通的综合效益具有重要意义。
闫丛笑, 高悦尔, 王强, 陈烨. 厦门市轨道站点辐射范围空间形态及影响因素研究[J]. 地球信息科学学报, 2023, 25(10): 2055-2069.DOI:10.12082/dqxxkx.2023.230253
YAN Congxiao, GAO Yueer, WANG Qiang, CHEN Ye. Spatial Form of Metro Catchment Areas and Its Influencing Factors in Xiamen City[J]. Journal of Geo-information Science, 2023, 25(10): 2055-2069.DOI:10.12082/dqxxkx.2023.230253
[1] | Calthorpe P. The next American metropolis: ecology, community, and the American dream[M]. New York: Princeton Architectural Press, 1993. |
[2] | Lin D, Zhang Y P, Zhu R X, et al. The analysis of catchment areas of metro stations using trajectory data generated by dockless shared bikes[J]. Sustainable Cities and Society, 2019, 49:101598. DOI:10.1016/j.scs.2019.101598 |
[3] | Wu X Y, Lu Y, Gong Y X, et al. The impacts of the built environment on bicycle-metro transfer trips: A new method to delineate metro catchment area based on People's actual cycling space[J]. Journal of Transport Geography, 2021, 97:103215. DOI:10.1016/j.jtrangeo.2021.103215 |
[4] | 王淑伟, 孙立山, 荣建. 北京市轨道站点吸引范围研究[J]. 交通运输系统工程与信息, 2013, 13(3):183-188. |
[Wang S W, Sun L S, Rong J. Catchment area analysis of Beijing transit stations[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(3):183-188.] DOI:10.16097/j.cnki.1009-6744.2013.03.015 | |
[5] |
申犁帆, 王烨, 张纯, 等. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究——以北京市44个轨道站点为例[J]. 地理学报, 2018, 73(12):2423-2439.
doi: 10.11821/dlxb201812011 |
[Shen L F, Wang Y, Zhang C, et al. Relationship between built environment of rational pedestrian catchment areas and URT commuting ridership: Evidence from 44 URT stations in Beijing[J]. Acta Geographica Sinica, 2018, 73(12):2423-2439.] DOI:10.11821/dlxb201812011 | |
[6] | Zacharias J, Zhao Q. Local environmental factors in walking distance at metro stations[J]. Public Transport, 2018, 10(1):91-106. DOI:10.1007/s12469-017-0174-y |
[7] | 曹哲静. 城市商业中心与交通中心的叠合与分异:基于复杂网络分析的东京轨道交通网络与城市形态耦合研究[J]. 国际城市规划, 2020, 35(3):42-53. |
[Cao Z J. Configuration of urban commercial centers and transport centers: Evidence from Tokyo transit network and urban morphology based on the complex network analysis[J]. Urban Planning International, 2020, 35(3):42-53.] DOI:10.19830/j.upi.2018.157 | |
[8] | 凌晓红, 王颖. 轨道交通站点地区空间网络形态研究——基于广州3个地铁站域的比较分析[J]. 都市快轨交通, 2022, 35(4):87-94. |
[Ling X H, Wang Y. Morphological characteristics of rail transit sites: Taking three subway station areas in Guangzhou as examples[J]. Urban Rapid Rail Transit, 2022, 35(4):87-94.] DOI:10.3969/j.issn.1672-6073.2022.04.012 | |
[9] | Xu Y J, Chen X S. Quantitative analysis of spatial vitality and spatial characteristics of urban underground space (UUS) in metro area[J]. Tunnelling and Underground Space Technology, 2021, 111:103875. DOI:10.1016/j.tust.2021.103875 |
[10] | 殷子渊, 薛求理. 深港轨道站站域空间紧凑度对比研究[J]. 城市规划, 2016, 40(3):76-82. |
[Yin Z Y, Xue Q L. Comparative research on compactness of metro station areas in Hong Kong and Shenzhen[J]. City Planning Review, 2016, 40(3):76-82.] DOI:10.11819/cpr20160313a | |
[11] | 王书灵, 张哲宁, 付浩洋, 等. 城市轨道交通站点周边土地利用的空间梯度特性研究[J]. 都市快轨交通, 2022, 35(3):36-41. |
[Wang S L, Zhang Z N, Fu H Y, et al. Spatial gradient characteristics of land use around urban rail transit stations[J]. Urban Rapid Rail Transit, 2022, 35(3):36-41.] DOI:10.3969/j.issn.1672-6073.2022.03.006 | |
[12] | Liu S W, Deng Y J, Hu X B, et al. Fan-shaped model for generating the anisotropic catchment area of subway stations based on feeder taxi trips[J]. Transportation Research Record: Journal of the Transportation Research Board, 2023, 2677(3):1424-1438. DOI:10.1177/03611981221124594 |
[13] |
曾如思, 沈中伟, 罗克乾. 轨道交通站域商业集聚特征与演变研究——基于POI数据的实证分析[J]. 南方建筑, 2020(6):126-132.
doi: 10.3969/j.issn.1000-0232.2020.06.126 |
[Zeng R S, Shen Z W, Luo K Q. Agglomeration and evolution characteristics of commercial function in metro station areas: An empirical study based on POI data[J]. South Architecture, 2020(6):126-132.] DOI:10.3969/j.issn.1000-0232.2020.06.126 | |
[14] | 于洋, 周睿, 吴冰瑕, 等. TOD导向下地铁站域商业空间演变与优化路径 ——以成都市3个城市级地铁站域为例[J]. 规划师, 2022, 38(4):107-114. |
[Yu Y, Zhou R, Wu B X, et al. Evolution mechanism and optimization path of commercial space in metro station area under TOD guidance: Three cases in Chengdu[J]. Planners, 2022, 38(4):107-114.] DOI:10.3969/j.issn.1006-0022.2022.04.015 | |
[15] | 唐健雄, 朱媛媛, 刘雨婧, 等. 典型旅游城市空间形态演变及影响因素——以张家界为例[J]. 经济地理, 2022, 42(1):221-229. |
[Tang J X, Zhu Y Y, Liu Y J, et al. Spatial morphology evolution of typical tourist cities and its influencing factors: Taking Zhangjiajie as an example[J]. Economic Geography, 2022, 42(1):221-229.] DOI:10.15957/j.cnki.jjdl.2022.01.026 | |
[16] |
李留通, 张森森, 赵新正, 等. 文化产业成长对城市空间形态演变的影响——以西安市核心区为例[J]. 地理研究, 2021, 40(2):431-445.
doi: 10.11821/dlyj020200139 |
[Li L T, Zhang S S, Zhao X Z, et al. The influence of spatial growth of cultural industry on the evolution of urban spatial morphology: Taking the core region of Xi'an as a case study[J]. Geographical Research, 2021, 40(2):431-445.] DOI:10.11821/dlyj020200139 | |
[17] | 陈德权, 兰泽英. 基于POI数据的城市中心体系识别与边界提取——以长沙市中心六区为例[J]. 现代城市研究, 2020, 35(4):82-89. |
[Chen D Q, Lan Z Y. Study on identification of urban center system and boundary extraction based on POI data: A case study of six center districts of Changsha[J]. Modern Urban Research, 2020, 35(4):82-89.] DOI:10.3969/j.issn.1009-6000.2020.04.011 | |
[18] | Vanhulsel M, Beckx C, Janssens D, et al. Measuring dissimilarity of geographically dispersed space-time paths[J]. Transportation, 2011, 38(1):65-79. DOI:10.1007/s11116-010-9286-9 |
[19] | Jiang Z R, Lei L P, Zhang J Z, et al. Spatio-temporal evolution and location factors of port and shipping service enterprises: A case study of the Yangtze River Delta[J]. Journal of Transport Geography, 2023, 106:103515. DOI:10.1016/j.jtrangeo.2022.103515 |
[20] |
赵璐, 赵作权. 基于特征椭圆的中国经济空间分异研究[J]. 地理科学, 2014, 34(8):979-986.
doi: 10.13249/j.cnki.sgs.2014.08.979 |
[Zhao L, Zhao Z Q. Projecting the spatial variation of economic based on the specific ellipses in China[J]. Scientia Geographica Sinica, 2014, 34(8):979-986.] DOI:10.13249/j.cnki.sgs.2014.08.015 | |
[21] | 申庆喜, 李诚固, 刘倩. 基于服务设施布局视角的城市空间结构研究——以长春主城区为例[J]. 经济地理, 2017, 37(3):129-135. |
[Shen Q X, Li C G, Liu Q. Urban spatial structure by service facilities distribution: A case in main districts of Changchun[J]. Economic Geography, 2017, 37(3):129-135.] DOI:10.15957/j.cnki.jjdl.2017.03.017 | |
[22] | 郭亮, 郑朝阳, 黄建中, 等. 基于通勤圈识别的大城市空间结构优化——以武汉市中心城区为例[J]. 城市规划, 2019, 43(10):43-54. |
[Guo L, Zheng C Y, Huang J Z, et al. Commuting circle-based spatial structure optimization of megacities: A case study of Wuhan central city[J]. City Planning Review, 2019, 43(10):43-54.] DOI:10.11819/cpr20191008a | |
[23] | Li R, Tong D Q. Constructing human activity spaces: A new approach incorporating complex urban activity-travel[J]. Journal of Transport Geography, 2016, 56:23-35. DOI:10.1016/j.jtrangeo.2016.08.013 |
[24] | Deng Y L, Zhao P J. The impact of new metro on travel behavior: Panel analysis using mobile phone data[J]. Transportation Research Part A: Policy and Practice, 2022, 162:46-57. DOI:10.1016/j.tra.2022.05.013 |
[25] | Botte M, Olaru D. Geo-spatial analysis of activity spaces in a TOD environment - Tracking impacts of rail transport policy using kernel density estimation[J]. Road & Transport Research: a Journal of Australian and New Zealand Research and Practice, 2012, 21(1):64-81. |
[26] | 王晓军, 张文强, 刘思远. 地铁站内外一体化导航系统关键技术研究及实现[J]. 都市快轨交通, 2022, 35(3):48-53. |
[Wang X J, Zhang W Q, Liu S Y. Development of a key technology for an integrated navigation system inside and outside subway station[J]. Urban Rapid Rail Transit, 2022, 35(3):48-53.] DOI:10.3969/j.issn.1672-6073.2022.03.008 | |
[27] | Ma X W, Ji Y J, Jin Y C, et al. Modeling the factors influencing the activity spaces of bikeshare around metro stations: A spatial regression model[J]. Sustainability, 2018, 10(11):3949. DOI:10.3390/su10113949 |
[28] | 蒋源, 陈小鸿, 胥川, 等. 轨道站点骑行接驳吸引范围及其影响要素研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(2):225-230. |
[Jiang Y, Chen X H, Xu C, et al. Influence analysis on catchment area of bike-transit integration[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(2):225-230.] DOI:10.3963/j.issn.2095-3844.2021.02.006 | |
[29] | Ma X W, Jin Y C, He M J. Measuring bikeshare access/egress transferring distance and catchment area around metro stations from smartcard data[J]. Information, 2018, 9(11):289. DOI:10.3390/info9110289 |
[30] | Li X, Liu Z Y, Ma X W. Measuring access and egress distance and catchment area of multiple feeding modes for metro transferring using survey data[J]. Sustainability, 2022, 14(5):2841. DOI:10.3390/su14052841 |
[31] | 郭瑞利, 黄正东. 基于成本加权距离分析的轨道站点多级影响区划分研究[J]. 现代城市研究, 2021, 36(8):73-82. |
[Guo R L, Huang Z D. Research on the delimitation of station multi-level influence area based on railway transit access survey and cost distance spatial analysis[J]. Modern Urban Research, 2021, 36(8):73-82.] DOI:10.3969/j.issn.1009-6000.2021.08.011 | |
[32] | 陈阳, 李伟芳, 任丽燕, 等. 空间统计视角下的农村居民点分布变化及驱动因素分析——以鄞州区滨海平原为例[J]. 资源科学, 2014, 36(11):2273-2281. |
[Chen Y, Li W F, Ren L Y, et al. Changes in the distribution of rural residential land on a coastal plain[J]. Resources Science, 2014, 36(11):2273-2281.] | |
[33] | Hochmair H H. Assessment of bicycle service areas around transit stations[J]. International Journal of Sustainable Transportation, 2015, 9(1):15-29. DOI:10.1080/15568318.2012.719998. |
[34] | Cheng Y H, Lin Y C. Expanding the effect of metro station service coverage by incorporating a public bicycle sharing system[J]. International Journal of Sustainable Transportation, 2018, 12(4):241-252. DOI:10.1080/15568318.2017.1347219 |
[1] | 左溪冰, 刘智, 金飞, 林雨准, 王淑香, 刘潇, 李美霖. 面向高光谱影像小样本分类的全局-局部特征自适应融合方法[J]. 地球信息科学学报, 2023, 25(8): 1699-1716. |
[2] | 罗秋雨, 乐阳, 谷岩岩. 城市地铁出行知识图谱嵌入表达的超参数选择[J]. 地球信息科学学报, 2023, 25(6): 1164-1175. |
[3] | 罗永臻, 董春, 张玉. 人口空间化适宜格网评价方法研究[J]. 地球信息科学学报, 2023, 25(5): 896-908. |
[4] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[5] | 陈科, 管海燕, 雷相达, 曹爽. 基于特征增强核点卷积网络的多光谱LiDAR点云分类方法[J]. 地球信息科学学报, 2023, 25(5): 1075-1087. |
[6] | 史雪威, 陈绪慧, 蔡明勇, 张新胜, 申振, 邰文飞, 申文明, 李静, 肖桐. 宁夏全区及生态保护红线生态系统服务价值变化评估[J]. 地球信息科学学报, 2023, 25(5): 999-1011. |
[7] | 张金雷, 陈奕洁, Panchamy Krishnakumari, 金广垠, 王骋程, 杨立兴. 基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713. |
[8] | 张宇峥, 鲁岩, 陈晓键. 实体-信息与场景-符号视角下的奶茶消费空间分布特征及影响因素[J]. 地球信息科学学报, 2023, 25(4): 823-837. |
[9] | 封雅静, 翟亮, 桑会勇, 成思远. 基于精细单元碳收支核算及变化分类方法[J]. 地球信息科学学报, 2023, 25(3): 468-478. |
[10] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[11] | 刘乐, 盛科荣, 王传阳. 中国科技型初创企业的时空格局及影响因素研究——基于创业生态系统视角[J]. 地球信息科学学报, 2023, 25(2): 340-353. |
[12] | 杜树坤, 张晶, 韩志军, 公茂玉. 基于随机森林模型的“网格-月”尺度武装冲突风险预测及影响因素分析——以中南半岛为例[J]. 地球信息科学学报, 2023, 25(10): 2026-2038. |
[13] | 张羽民, 赵俊杰, 梅强, 刘希亮, 陈卓栋, 李建强, 王少华, 石宇良, 柴金川, 高雨瑶, 井小倩, 杨念迪, 马小焱. 一种面向细粒度空气质量分指数(IAQI)预测的时空因果卷积模型[J]. 地球信息科学学报, 2023, 25(1): 115-130. |
[14] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[15] | 闫兆进, 杨慧. 基于多源数据和船舶停留轨迹语义建模的港口目标识别[J]. 地球信息科学学报, 2022, 24(9): 1662-1675. |
|